# ---------------------------------------------------------------------------- # SpeechUT: Bridging Speech and Text with Hidden-Unit for Encoder-Decoder Based Speech-Text Pre-training (https://arxiv.org/abs/2210.03730) # Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechUT # Code based on fairseq: https://github.com/facebookresearch/fairseq/tree/272c4c5197250997148fb12c0db6306035f166a4 # # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # ---------------------------------------------------------------------------- import math from argparse import Namespace from dataclasses import dataclass, field from omegaconf import II from typing import Optional import torch import torch.nn.functional as F from fairseq import metrics, utils from fairseq.criterions import FairseqCriterion, register_criterion from fairseq.criterions.label_smoothed_cross_entropy import label_smoothed_nll_loss from fairseq.dataclass import FairseqDataclass from fairseq.data.data_utils import post_process from fairseq.tasks import FairseqTask from fairseq.logging.meters import safe_round @dataclass class CtcCeCriterionConfig(FairseqDataclass): zero_infinity: bool = field( default=False, metadata={"help": "zero inf loss when source length <= target length"}, ) sentence_avg: bool = II("optimization.sentence_avg") post_process: str = field( default="letter", metadata={ "help": "how to post process predictions into words. can be letter, " "wordpiece, BPE symbols, etc. " "See fairseq.data.data_utils.post_process() for full list of options" }, ) wer_kenlm_model: Optional[str] = field( default=None, metadata={ "help": "if this is provided, use kenlm to compute wer (along with other wer_* args)" }, ) wer_lexicon: Optional[str] = field( default=None, metadata={"help": "lexicon to use with wer_kenlm_model"}, ) wer_lm_weight: float = field( default=2.0, metadata={"help": "lm weight to use with wer_kenlm_model"}, ) wer_word_score: float = field( default=-1.0, metadata={"help": "lm word score to use with wer_kenlm_model"}, ) wer_args: Optional[str] = field( default=None, metadata={ "help": "DEPRECATED: tuple of (wer_kenlm_model, wer_lexicon, wer_lm_weight, wer_word_score)" }, ) dec_weight: float = field( default=0.5, metadata={"help": "weights for decoder CE Loss, loss will be ((1 - dec_weight) * hubert_loss + dec_weight * CE_Loss)"}, ) report_accuracy: bool = field( default=True, metadata={"help": "report decoder accuracy metric"}, ) ignore_prefix_size: int = field( default=0, metadata={"help": "Ignore first N tokens"}, ) label_smoothing: float = field( default=0.1, metadata={"help": "epsilon for label smoothing, 0 means no label smoothing"}, ) @register_criterion("ctc_ce", dataclass=CtcCeCriterionConfig) class CtcCeCriterion(FairseqCriterion): def __init__(self, cfg: CtcCeCriterionConfig, task: FairseqTask): super().__init__(task) self.blank_idx = ( task.target_dictionary.index(task.blank_symbol) if hasattr(task, "blank_symbol") else 0 ) self.pad_idx = task.target_dictionary.pad() self.eos_idx = task.target_dictionary.eos() self.post_process = cfg.post_process if cfg.wer_args is not None: ( cfg.wer_kenlm_model, cfg.wer_lexicon, cfg.wer_lm_weight, cfg.wer_word_score, ) = eval(cfg.wer_args) if cfg.wer_kenlm_model is not None: from examples.speech_recognition.w2l_decoder import W2lKenLMDecoder dec_args = Namespace() dec_args.nbest = 1 dec_args.criterion = "ctc" dec_args.kenlm_model = cfg.wer_kenlm_model dec_args.lexicon = cfg.wer_lexicon dec_args.beam = 50 dec_args.beam_size_token = min(50, len(task.target_dictionary)) dec_args.beam_threshold = min(50, len(task.target_dictionary)) dec_args.lm_weight = cfg.wer_lm_weight dec_args.word_score = cfg.wer_word_score dec_args.unk_weight = -math.inf dec_args.sil_weight = 0 self.w2l_decoder = W2lKenLMDecoder(dec_args, task.target_dictionary) else: self.w2l_decoder = None self.zero_infinity = cfg.zero_infinity self.sentence_avg = cfg.sentence_avg self.dec_weight = cfg.dec_weight self.report_accuracy = cfg.report_accuracy self.ignore_prefix_size = cfg.ignore_prefix_size self.eps = cfg.label_smoothing def forward(self, model, sample, reduce=True): net_output = model(**sample["net_input"]) lprobs = model.get_normalized_probs( net_output, log_probs=True ).contiguous() # (T, B, C) from the encoder if "src_lengths" in sample["net_input"]: input_lengths = sample["net_input"]["src_lengths"] else: if net_output["padding_mask"] is not None: non_padding_mask = ~net_output["padding_mask"] input_lengths = non_padding_mask.long().sum(-1) else: input_lengths = lprobs.new_full( (lprobs.size(1),), lprobs.size(0), dtype=torch.long ) pad_mask = (sample["target"] != self.pad_idx) & ( sample["target"] != self.eos_idx ) targets_flat = sample["target"].masked_select(pad_mask) if "target_lengths" in sample: target_lengths = sample["target_lengths"] else: target_lengths = pad_mask.sum(-1) with torch.backends.cudnn.flags(enabled=False): loss = F.ctc_loss( lprobs, targets_flat, input_lengths, target_lengths, blank=self.blank_idx, reduction="sum", zero_infinity=self.zero_infinity, ) ntokens = ( sample["ntokens"] if "ntokens" in sample else target_lengths.sum().item() ) sample_size = sample["target"].size(0) if self.sentence_avg else ntokens logging_output = {} if "decoder_target" in sample: if net_output["decoder_out"] is not None: dec_sample_size = sample["target"].size(0) if self.sentence_avg else sample["dec_ntokens"] dec_loss, dec_nll_loss = self.compute_ce_loss(model, net_output["decoder_out"], sample, reduce=reduce) logging_output["ctc_loss"] = loss.item() loss = (1 - self.dec_weight) * loss + (self.dec_weight * dec_loss * sample_size / dec_sample_size) logging_output["dec_loss"] = dec_loss.item() logging_output["dec_nll_loss"] = dec_nll_loss.item() logging_output["dec_sample_size"] = dec_sample_size if self.report_accuracy: n_correct, total = self.compute_accuracy(model, net_output["decoder_out"], sample) logging_output["dec_n_correct"] = utils.item(n_correct.data) logging_output["total"] = utils.item(total.data) else: logging_output["ctc_loss"] = loss.item() loss = (1 - self.dec_weight) * loss logging_output["dec_loss"] = 0 logging_output["dec_nll_loss"] = 0 logging_output["dec_sample_size"] = 1 if self.report_accuracy: logging_output["dec_n_correct"] = 0 logging_output["total"] = 1 logging_output = { "loss": utils.item(loss.data), # * sample['ntokens'], "ntokens": ntokens, "nsentences": sample["id"].numel(), "sample_size": sample_size, **logging_output, } if not model.training and self.dec_weight < 1.0: import editdistance with torch.no_grad(): lprobs_t = lprobs.transpose(0, 1).float().contiguous().cpu() c_err = 0 c_len = 0 w_errs = 0 w_len = 0 wv_errs = 0 for lp, t, inp_l in zip( lprobs_t, sample["target_label"] if "target_label" in sample else sample["target"], input_lengths, ): lp = lp[:inp_l].unsqueeze(0) decoded = None if self.w2l_decoder is not None: decoded = self.w2l_decoder.decode(lp) if len(decoded) < 1: decoded = None else: decoded = decoded[0] if len(decoded) < 1: decoded = None else: decoded = decoded[0] p = (t != self.task.target_dictionary.pad()) & ( t != self.task.target_dictionary.eos() ) targ = t[p] targ_units = self.task.target_dictionary.string(targ) targ_units_arr = targ.tolist() toks = lp.argmax(dim=-1).unique_consecutive() pred_units_arr = toks[toks != self.blank_idx].tolist() c_err += editdistance.eval(pred_units_arr, targ_units_arr) c_len += len(targ_units_arr) targ_words = post_process(targ_units, self.post_process).split() pred_units = self.task.target_dictionary.string(pred_units_arr) pred_words_raw = post_process(pred_units, self.post_process).split() if decoded is not None and "words" in decoded: pred_words = decoded["words"] w_errs += editdistance.eval(pred_words, targ_words) wv_errs += editdistance.eval(pred_words_raw, targ_words) else: dist = editdistance.eval(pred_words_raw, targ_words) w_errs += dist wv_errs += dist w_len += len(targ_words) logging_output["wv_errors"] = wv_errs logging_output["w_errors"] = w_errs logging_output["w_total"] = w_len logging_output["c_errors"] = c_err logging_output["c_total"] = c_len return loss, sample_size, logging_output def compute_ce_loss(self, model, net_output, sample, reduce=True): lprobs, target = self.get_lprobs_and_target(model, net_output, sample) loss, nll_loss = label_smoothed_nll_loss( lprobs, target, self.eps, ignore_index=self.pad_idx, reduce=reduce, ) return loss, nll_loss def compute_accuracy(self, model, net_output, sample): lprobs, target = self.get_lprobs_and_target(model, net_output, sample) mask = target.ne(self.pad_idx) n_correct = torch.sum( lprobs.argmax(1).masked_select(mask).eq(target.masked_select(mask)) ) total = torch.sum(mask) return n_correct, total def get_lprobs_and_target(self, model, net_output, sample): lprobs = model.get_normalized_probs(net_output, log_probs=True) target = sample["decoder_target"] if self.ignore_prefix_size > 0: if getattr(lprobs, "batch_first", False): lprobs = lprobs[:, self.ignore_prefix_size :, :].contiguous() target = target[:, self.ignore_prefix_size :].contiguous() else: lprobs = lprobs[self.ignore_prefix_size :, :, :].contiguous() target = target[self.ignore_prefix_size :, :].contiguous() return lprobs.view(-1, lprobs.size(-1)), target.view(-1) @staticmethod def reduce_metrics(logging_outputs) -> None: """Aggregate logging outputs from data parallel training.""" loss_sum = utils.item(sum(log.get("loss", 0) for log in logging_outputs)) ntokens = utils.item(sum(log.get("ntokens", 0) for log in logging_outputs)) nsentences = utils.item( sum(log.get("nsentences", 0) for log in logging_outputs) ) sample_size = utils.item( sum(log.get("sample_size", 0) for log in logging_outputs) ) metrics.log_scalar( "loss", loss_sum / sample_size / math.log(2), sample_size, round=3 ) metrics.log_scalar("ntokens", ntokens) metrics.log_scalar("nsentences", nsentences) if sample_size != ntokens: metrics.log_scalar( "nll_loss", loss_sum / ntokens / math.log(2), ntokens, round=3 ) c_errors = sum(log.get("c_errors", 0) for log in logging_outputs) metrics.log_scalar("_c_errors", c_errors) c_total = sum(log.get("c_total", 0) for log in logging_outputs) metrics.log_scalar("_c_total", c_total) w_errors = sum(log.get("w_errors", 0) for log in logging_outputs) metrics.log_scalar("_w_errors", w_errors) wv_errors = sum(log.get("wv_errors", 0) for log in logging_outputs) metrics.log_scalar("_wv_errors", wv_errors) w_total = sum(log.get("w_total", 0) for log in logging_outputs) metrics.log_scalar("_w_total", w_total) if c_total > 0: metrics.log_derived( "uer", lambda meters: safe_round( meters["_c_errors"].sum * 100.0 / meters["_c_total"].sum, 3 ) if meters["_c_total"].sum > 0 else float("nan"), ) if w_total > 0: metrics.log_derived( "wer", lambda meters: safe_round( meters["_w_errors"].sum * 100.0 / meters["_w_total"].sum, 3 ) if meters["_w_total"].sum > 0 else float("nan"), ) metrics.log_derived( "raw_wer", lambda meters: safe_round( meters["_wv_errors"].sum * 100.0 / meters["_w_total"].sum, 3 ) if meters["_w_total"].sum > 0 else float("nan"), ) if "dec_loss" in logging_outputs[0]: ctc_loss_sum = sum(log.get("ctc_loss", 0) for log in logging_outputs) dec_loss_sum = sum(log.get("dec_loss", 0) for log in logging_outputs) dec_nll_loss_sum = sum(log.get("dec_nll_loss", 0) for log in logging_outputs) dec_sample_size = sum(log.get("dec_sample_size", 0) for log in logging_outputs) metrics.log_scalar( "dec_loss", dec_loss_sum / dec_sample_size / math.log(2), dec_sample_size, round=3 ) metrics.log_scalar( "ctc_loss", ctc_loss_sum / sample_size / math.log(2), sample_size, round=3 ) metrics.log_scalar( "dec_nll_loss", dec_nll_loss_sum / dec_sample_size / math.log(2), dec_sample_size, round=3 ) metrics.log_derived( "dec_ppl", lambda meters: utils.get_perplexity(meters["dec_nll_loss"].avg) ) total = utils.item(sum(log.get("total", 0) for log in logging_outputs)) if total > 0: metrics.log_scalar("total", total) n_correct = utils.item( sum(log.get("dec_n_correct", 0) for log in logging_outputs) ) metrics.log_scalar("dec_n_correct", n_correct) metrics.log_derived( "dec_accuracy", lambda meters: round( meters["dec_n_correct"].sum * 100.0 / meters["total"].sum, 3 ) if meters["total"].sum > 0 else float("nan"), ) @staticmethod def logging_outputs_can_be_summed() -> bool: """ Whether the logging outputs returned by `forward` can be summed across workers prior to calling `reduce_metrics`. Setting this to True will improves distributed training speed. """ return True