#!/usr/bin/env python3 -u # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Translate pre-processed data with a trained model. """ import ast import logging import argparse import math import os import sys from argparse import Namespace from itertools import chain import numpy as np import torch from omegaconf import DictConfig from fairseq import checkpoint_utils, options, scoring, tasks, utils from fairseq.dataclass.utils import convert_namespace_to_omegaconf from fairseq.logging import progress_bar from fairseq.logging.meters import StopwatchMeter, TimeMeter import os import torch import gradio as gr import numpy as np import os.path as op import pyarabic.araby as araby import subprocess import soundfile as sf from artst.tasks.artst import ArTSTTask from artst.models.artst import ArTSTTransformerModel from fairseq.tasks.hubert_pretraining import LabelEncoder from fairseq import checkpoint_utils, options, scoring, tasks, utils from loguru import logger from fairseq.logging.meters import StopwatchMeter, TimeMeter def postprocess(wav, cur_sample_rate): if wav.dim() == 2: wav = wav.mean(-1) assert wav.dim() == 1, wav.dim() if cur_sample_rate != 16000: raise Exception(f"sr {cur_sample_rate} != {16000}") return wav def main(cfg: DictConfig, audio_path): print('config') print(cfg) if isinstance(cfg, Namespace): cfg = convert_namespace_to_omegaconf(cfg) assert cfg.common_eval.path is not None, "--path required for generation!" assert ( not cfg.generation.sampling or cfg.generation.nbest == cfg.generation.beam ), "--sampling requires --nbest to be equal to --beam" assert ( cfg.generation.replace_unk is None or cfg.dataset.dataset_impl == "raw" ), "--replace-unk requires a raw text dataset (--dataset-impl=raw)" if cfg.common_eval.results_path is not None: os.makedirs(cfg.common_eval.results_path, exist_ok=True) output_path = os.path.join( cfg.common_eval.results_path, "generate-{}.txt".format(cfg.dataset.gen_subset), ) with open(output_path, "w", buffering=1, encoding="utf-8") as h: return _main(cfg, h) else: return _main(cfg, sys.stdout, audio_path) def get_symbols_to_strip_from_output(generator): if hasattr(generator, "symbols_to_strip_from_output"): return generator.symbols_to_strip_from_output else: return {generator.eos} def _main(cfg: DictConfig, output_file, audio_path): logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=output_file, ) logger = logging.getLogger("fairseq_cli.generate") utils.import_user_module(cfg.common) if cfg.dataset.max_tokens is None and cfg.dataset.batch_size is None: cfg.dataset.max_tokens = 12000 logger.info(cfg) # Fix seed for stochastic decoding if cfg.common.seed is not None and not cfg.generation.no_seed_provided: np.random.seed(cfg.common.seed) utils.set_torch_seed(cfg.common.seed) use_cuda = torch.cuda.is_available() and not cfg.common.cpu # Load dataset splits task = tasks.setup_task(cfg.task) # Set dictionaries try: src_dict = getattr(task, "source_dictionary", None) except NotImplementedError: src_dict = None tgt_dict = task.target_dictionary overrides = ast.literal_eval(cfg.common_eval.model_overrides) # Load ensemble logger.info("loading model(s) from {}".format(cfg.common_eval.path)) models, saved_cfg = checkpoint_utils.load_model_ensemble( utils.split_paths(cfg.common_eval.path), arg_overrides=overrides, task=task, suffix=cfg.checkpoint.checkpoint_suffix, strict=(cfg.checkpoint.checkpoint_shard_count == 1), num_shards=cfg.checkpoint.checkpoint_shard_count, ) # loading the dataset should happen after the checkpoint has been loaded so we can give it the saved task config # task.load_dataset(cfg.dataset.gen_subset, task_cfg=saved_cfg.task) if cfg.generation.lm_path is not None: overrides["data"] = cfg.task.data try: lms, _ = checkpoint_utils.load_model_ensemble( [cfg.generation.lm_path], arg_overrides=overrides, task=None ) except: logger.warning( f"Failed to load language model! Please make sure that the language model dict is the same " f"as target dict and is located in the data dir ({cfg.task.data})" ) raise assert len(lms) == 1 else: lms = [None] # Optimize ensemble for generation for model in chain(models, lms): if model is None: continue if cfg.common.fp16: model.half() if use_cuda and not cfg.distributed_training.pipeline_model_parallel: model.cuda() model.prepare_for_inference_(cfg) # Load alignment dictionary for unknown word replacement # (None if no unknown word replacement, empty if no path to align dictionary) align_dict = utils.load_align_dict(cfg.generation.replace_unk) # Initialize generator gen_timer = StopwatchMeter() extra_gen_cls_kwargs = {"lm_model": lms[0], "lm_weight": cfg.generation.lm_weight} generator = task.build_generator( models, cfg.generation, extra_gen_cls_kwargs=extra_gen_cls_kwargs ) # Handle tokenization and BPE tokenizer = task.build_tokenizer(cfg.tokenizer) bpe = task.build_bpe(cfg.bpe) def decode_fn(x): if bpe is not None: x = bpe.decode(x) if tokenizer is not None: x = tokenizer.decode(x) return x scorer = scoring.build_scorer(cfg.scoring, tgt_dict) num_sentences = 0 has_target = True wps_meter = TimeMeter() wav, cur_sample_rate = sf.read(audio_path) wav = torch.from_numpy(wav).float() wav = postprocess(wav, cur_sample_rate) sample = {'index': 0, 'net_input': {'source': torch.tensor(wav).unsqueeze(dim=0), 'padding_mask': torch.BoolTensor(wav.shape).fill_(False).unsqueeze(dim=0)}, 'id': [0], 'target': [[None], ]} prefix_tokens = None if cfg.generation.prefix_size > 0: prefix_tokens = sample["target"][:, : cfg.generation.prefix_size] constraints = None if "constraints" in sample: constraints = sample["constraints"] gen_timer.start() hypos = task.inference_step( generator, models, sample, prefix_tokens=prefix_tokens, constraints=constraints, ) num_generated_tokens = sum(len(h[0]["tokens"]) for h in hypos) gen_timer.stop(num_generated_tokens) for i, sample_id in enumerate(sample["id"]): has_target = False # Remove padding if "src_tokens" in sample["net_input"]: src_tokens = utils.strip_pad( sample["net_input"]["src_tokens"][i, :], tgt_dict.pad() ) else: src_tokens = None target_tokens = None if has_target: target_tokens = ( utils.strip_pad(sample["target"][i, :], tgt_dict.pad()).int().cpu() ) # Either retrieve the original sentences or regenerate them from tokens. if align_dict is not None: src_str = task.dataset(cfg.dataset.gen_subset).src.get_original_text( sample_id ) target_str = task.dataset(cfg.dataset.gen_subset).tgt.get_original_text( sample_id ) else: if src_dict is not None: src_str = src_dict.string(src_tokens, cfg.common_eval.post_process) else: src_str = "" if has_target: target_str = tgt_dict.string( target_tokens, cfg.common_eval.post_process, escape_unk=True, extra_symbols_to_ignore=get_symbols_to_strip_from_output( generator ), ) src_str = decode_fn(src_str) if has_target: target_str = decode_fn(target_str) if not cfg.common_eval.quiet: if src_dict is not None: print("S-{}\t{}".format(sample_id, src_str), file=output_file) if has_target: print("T-{}\t{}".format(sample_id, target_str), file=output_file) # Process top predictions for j, hypo in enumerate(hypos[i][: cfg.generation.nbest]): hypo_tokens, hypo_str, alignment = utils.post_process_prediction( hypo_tokens=hypo["tokens"].int().cpu(), src_str=src_str, alignment=hypo["alignment"], align_dict=align_dict, tgt_dict=tgt_dict, remove_bpe=cfg.common_eval.post_process, extra_symbols_to_ignore=get_symbols_to_strip_from_output(generator), ) detok_hypo_str = decode_fn(hypo_str) if not cfg.common_eval.quiet: score = hypo["score"] / math.log(2) # convert to base 2 # original hypothesis (after tokenization and BPE) print( "H-{}\t{}\t{}".format(sample_id, score, hypo_str), file=output_file, ) # detokenized hypothesis print( "D-{}\t{}\t{}".format(sample_id, score, detok_hypo_str), file=output_file, ) print( "P-{}\t{}".format( sample_id, " ".join( map( lambda x: "{:.4f}".format(x), # convert from base e to base 2 hypo["positional_scores"] .div_(math.log(2)) .tolist(), ) ), ), file=output_file, ) if cfg.generation.print_alignment == "hard": print( "A-{}\t{}".format( sample_id, " ".join( [ "{}-{}".format(src_idx, tgt_idx) for src_idx, tgt_idx in alignment ] ), ), file=output_file, ) if cfg.generation.print_alignment == "soft": print( "A-{}\t{}".format( sample_id, " ".join( [",".join(src_probs) for src_probs in alignment] ), ), file=output_file, ) if cfg.generation.print_step: print( "I-{}\t{}".format(sample_id, hypo["steps"]), file=output_file, ) if cfg.generation.retain_iter_history: for step, h in enumerate(hypo["history"]): _, h_str, _ = utils.post_process_prediction( hypo_tokens=h["tokens"].int().cpu(), src_str=src_str, alignment=None, align_dict=None, tgt_dict=tgt_dict, remove_bpe=None, ) print( "E-{}_{}\t{}".format(sample_id, step, h_str), file=output_file, ) # Score only the top hypothesis if has_target and j == 0: if ( align_dict is not None or cfg.common_eval.post_process is not None ): # Convert back to tokens for evaluation with unk replacement and/or without BPE target_tokens = tgt_dict.encode_line( target_str, add_if_not_exist=True ) hypo_tokens = tgt_dict.encode_line( detok_hypo_str, add_if_not_exist=True ) if hasattr(scorer, "add_string"): scorer.add_string(target_str, detok_hypo_str) else: scorer.add(target_tokens, hypo_tokens) wps_meter.update(num_generated_tokens) # progress.log({"wps": round(wps_meter.avg)}) logger.info("NOTE: hypothesis and token scores are output in base 2") if has_target: if cfg.bpe and not cfg.generation.sacrebleu: if cfg.common_eval.post_process: logger.warning( "BLEU score is being computed by splitting detokenized string on spaces, this is probably not what you want. Use --sacrebleu for standard 13a BLEU tokenization" ) else: logger.warning( "If you are using BPE on the target side, the BLEU score is computed on BPE tokens, not on proper words. Use --sacrebleu for standard 13a BLEU tokenization" ) # use print to be consistent with other main outputs: S-, H-, T-, D- and so on print( "Generate {} with beam={}: {}".format( cfg.dataset.gen_subset, cfg.generation.beam, scorer.result_string() ), file=output_file, ) return detok_hypo_str def inference(audio_path): # parser = options.get_generation_parser() # TODO: replace this workaround with refactoring of `AudioPretraining` parser = argparse.ArgumentParser(description='Process some integers.') parser.add_argument( "--arch", "-a", metavar="ARCH", default="wav2vec2", help="Model architecture. For constructing tasks that rely on " "model args (e.g. `AudioPretraining`)", ) parser.add_argument('--data', type=str, default='./utils', metavar='data') parser.add_argument('--bpe-tokenizer', type=str, default='./utils/arabic.model') parser.add_argument('--user-dir', type=str, default='./artst/') parser.add_argument('--task', type=str, default='artst') parser.add_argument('--t5-task', type=str, default='s2t') parser.add_argument('--path', type=str, default='./ckpts/mgb2_asr.pt') parser.add_argument('--ctc-weight', type=float, default=0.25) parser.add_argument('--max-tokens', type=int, default=350000) parser.add_argument('--beam', type=int, default=5) parser.add_argument('--scoring', type=str, default='wer') parser.add_argument('--max-len-a', type=float, default=0) parser.add_argument('--max-len-b', type=int, default=1000) parser.add_argument('--sample-rate', type=int, default=16000) parser.add_argument('--batch-size', type=int, default=1) # parser.add_argument('--num-workers', type=int, default=4) parser.add_argument('--seed', type=int, default=4) parser.add_argument('--normalize', type=bool, default=True) args = parser.parse_args() return main(args, audio_path=audio_path) text_box = gr.Textbox(label="Arabic Text") input_audio = gr.Audio(label="Upload Audio", type="filepath", sources="upload") title="ArTST: Arabic Speech Recognition" description="ArTST: Arabic text and speech transformer based on the T5 transformer. This space demonstarates the ASR checkpoint finetuned on \ the MGB-2 dataset. The model is pre-trained on the MGB-2 dataset." examples=["samples/sample_audio.wav"] article = """
References: ArTST paper | GitHub | Weights and Tokenizer
@misc{toyin2023artst, title={ArTST: Arabic Text and Speech Transformer}, author={Hawau Olamide Toyin and Amirbek Djanibekov and Ajinkya Kulkarni and Hanan Aldarmaki}, year={2023}, eprint={2310.16621}, archivePrefix={arXiv}, primaryClass={cs.CL} }
Speaker embeddings were generated from CMU ARCTIC.
ArTST is based on SpeechT5 architecture.