# ---------------------------------------------------------------------------- # SpeechLM: Enhanced Speech Pre-Training with Unpaired Textual Data (https://arxiv.org/abs/2209.15329) # Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechLM # Code based on fairseq: https://github.com/facebookresearch/fairseq # # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # ---------------------------------------------------------------------------- import copy import logging from typing import Dict, List, Optional, Tuple import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor from modules import ( compute_mask_indices, LayerNorm, ConvFeatureExtractionModel, GradMultiply, TransformerEncoder, TransformerEncoderBase, ) # from fairseq.models.transformer import TransformerConfig logger = logging.getLogger(__name__) class DictConfig: def __init__(self, cfg=None): if cfg is not None: self.update(cfg) def update(self, cfg: dict): self.__dict__.update(cfg) class TransformerConfig: def __init__(self, cfg=None): if cfg is not None: self.update(cfg) def update(self, cfg: dict): if 'encoder' in cfg: self.encoder = DictConfig(cfg['encoder']) del cfg['encoder'] if 'quant_noise' in cfg: self.quant_noise = DictConfig(cfg['quant_noise']) del cfg['quant_noise'] if 'decoder' in cfg: del cfg['decoder'] self.__dict__.update(cfg) class SpeechLMConfig: def __init__(self, cfg=None): self.label_rate: int = 50 self.extractor_mode: str = "default" # mode for feature extractor. default has a single group norm with d groups in the first conv block, whereas layer_norm has layer norms in every block (meant to use with normalize=True) self.encoder_layers: int = 12 # num encoder layers in the transformer self.encoder_embed_dim: int = 768 # encoder embedding dimension self.encoder_embed_dim: int = 768 # encoder embedding dimension self.encoder_ffn_embed_dim: int = 3072 # encoder embedding dimension for FFN self.encoder_attention_heads: int = 12 # num encoder attention heads self.activation_fn: str = "gelu" # activation function to use self.layer_type: str = "transformer" # layer type in encoder # dropouts self.dropout: float = 0.1 # dropout probability for the transformer self.attention_dropout: float = 0.1 # dropout probability for attention weights self.activation_dropout: float = 0.0 # dropout probability after activation in FFN self.encoder_layerdrop: float = 0.0 # probability of dropping a tarnsformer layer self.dropout_input: float = 0.0 # dropout to apply to the input (after feat extr) self.dropout_features: float = 0.0 # dropout to apply to the features (after feat extr) self.final_dim: int = 256 # project final representations and targets to this many dimensions self.layer_norm_first: bool = False # apply layernorm first in the transformer self.conv_feature_layers: str = "[(512,10,5)] + [(512,3,2)] * 4 + [(512,2,2)] * 2" # string describing convolutional feature extraction layers in form of a python list that contains [(dim, kernel_size, stride), ...] self.conv_bias: bool = False # include bias in conv encoder self.feature_grad_mult: float = 1.0 # multiply feature extractor var grads by this # masking self.mask_length: int = 10 # mask length self.mask_prob: float = 0.65 # probability of replacing a token with mask self.mask_selection: str = "static" # how to choose mask length self.mask_other: float = 0 # secondary mask argument (used for more complex distributions), see help in compute_mask_indicesh self.no_mask_overlap: bool = False # whether to allow masks to overlap self.mask_min_space: int = 1 # min space between spans (if no overlap is enabled) # channel masking self.mask_channel_length: int = 10 # length of the mask for features (channels) self.mask_channel_prob: float = 0.0 # probability of replacing a feature with 0 self.mask_channel_selection: str = "static" # how to choose mask length for channel masking self.mask_channel_other: float = 0 # secondary mask argument (used for more complex distributions), see help in compute_mask_indices self.no_mask_channel_overlap: bool = False # whether to allow channel masks to overlap self.mask_channel_min_space: int = 1 # min space between spans (if no overlap is enabled) # positional embeddings self.conv_pos: int = 128 # number of filters for convolutional positional embeddings self.conv_pos_groups: int = 16 # number of groups for convolutional positional embedding # loss computation self.skip_masked: bool = False # skip computing losses over masked frames self.skip_nomask: bool = False # skip computing losses over unmasked frames self.checkpoint_activations: bool = False # recompute activations and save memory for extra compute # FP16 optimization self.required_seq_len_multiple: int = 2 # pad the input to encoder such that the sequence length is divisible by multiple # Custom self.use_rel_pos_enc: bool = False # whether to use relative positional encoding self.scaling_for_att: float = 1.0 # scaling for attention weights to prevent overflow issue (for large model) # unit encoder-decoder self.add_unit_encoder: bool = False # add unit encoder # embedding mixing self.mix_with_unit: bool = True # mix with the unit embeddings self.use_pred_unit: bool = False # use the embeddings of predicted units self.l2_embedding: bool = False # compute l2 loss between unit embedding and unit hidden state if cfg is not None: self.update(cfg) def update(self, cfg: dict): model_cfg = copy.deepcopy(cfg) self.text_transformer = TransformerConfig(model_cfg['text_transformer']) del model_cfg['text_transformer'] self.__dict__.update(model_cfg) class SpeechLM(nn.Module): def __init__( self, cfg: SpeechLMConfig, ) -> None: super().__init__() self.cfg = cfg feature_enc_layers = eval(cfg.conv_feature_layers) # noqa self.embed = feature_enc_layers[-1][0] self.feature_extractor = ConvFeatureExtractionModel( conv_layers=feature_enc_layers, dropout=0.0, mode=cfg.extractor_mode, conv_bias=cfg.conv_bias, ) sample_rate = 16000 feature_ds_rate = np.prod([s for _, _, s in feature_enc_layers]) self.feat2tar_ratio = cfg.label_rate * feature_ds_rate / sample_rate self.post_extract_proj = ( nn.Linear(self.embed, cfg.encoder_embed_dim) if self.embed != cfg.encoder_embed_dim else None ) self.mask_prob = cfg.mask_prob self.mask_selection = cfg.mask_selection self.mask_other = cfg.mask_other self.mask_length = cfg.mask_length self.no_mask_overlap = cfg.no_mask_overlap self.mask_min_space = cfg.mask_min_space self.mask_channel_prob = cfg.mask_channel_prob self.mask_channel_selection = cfg.mask_channel_selection self.mask_channel_other = cfg.mask_channel_other self.mask_channel_length = cfg.mask_channel_length self.no_mask_channel_overlap = cfg.no_mask_channel_overlap self.mask_channel_min_space = cfg.mask_channel_min_space self.dropout_input = nn.Dropout(cfg.dropout_input) self.dropout_features = nn.Dropout(cfg.dropout_features) self.feature_grad_mult = cfg.feature_grad_mult self.logit_temp = cfg.logit_temp self.skip_masked = cfg.skip_masked self.skip_nomask = cfg.skip_nomask self.final_dim = cfg.final_dim if cfg.final_dim > 0 else cfg.encoder_embed_dim self.final_proj_list = nn.ModuleList([ nn.Linear(cfg.encoder_embed_dim, self.final_dim) for _ in range(2) ]) self.mask_emb = nn.Parameter( torch.FloatTensor(cfg.encoder_embed_dim).uniform_() ) self.encoder = TransformerEncoder(cfg) self.layer_norm = LayerNorm(self.embed) ### build unit encoder: self.mask_u2t = cfg.mask_u2t self.compute_mum = cfg.compute_mum self.add_text_ctc = cfg.add_text_ctc self.text_ctc_conv_kernel = cfg.text_ctc_conv_kernel self.padding_idx = 1 self.add_unit_encoder = cfg.add_unit_encoder self.mix_with_unit = cfg.mix_with_unit self.use_pred_unit = cfg.use_pred_unit self.l2_embedding = cfg.l2_embedding if self.add_unit_encoder: self.unit_embed_tokens = None ### build unit encoder self.unit_encoder = TransformerEncoderBase( cfg.text_transformer, dictionary=None, embed_tokens=self.unit_embed_tokens, use_rel_pos_enc=cfg.use_rel_pos_enc, scaling_for_att=cfg.scaling_for_att, ) ### build unit2text decoder, not available for now self.add_decoder = cfg.add_decoder def upgrade_state_dict_named(self, state_dict, name): """Upgrade a (possibly old) state dict for new versions.""" super().upgrade_state_dict_named(state_dict, name) return state_dict def apply_mask(self, x, padding_mask, target_list): B, T, C = x.shape if self.mask_prob > 0: mask_indices = compute_mask_indices( (B, T), padding_mask, self.mask_prob, self.mask_length, self.mask_selection, self.mask_other, min_masks=2, no_overlap=self.no_mask_overlap, min_space=self.mask_min_space, ) mask_indices = torch.from_numpy(mask_indices).to(x.device) x[mask_indices] = self.mask_emb else: mask_indices = None if self.mask_channel_prob > 0: mask_channel_indices = compute_mask_indices( (B, C), None, self.mask_channel_prob, self.mask_channel_length, self.mask_channel_selection, self.mask_channel_other, no_overlap=self.no_mask_channel_overlap, min_space=self.mask_channel_min_space, ) mask_channel_indices = ( torch.from_numpy(mask_channel_indices) .to(x.device) .unsqueeze(1) .expand(-1, T, -1) ) x[mask_channel_indices] = 0 return x, mask_indices def forward_features(self, source: torch.Tensor) -> torch.Tensor: if self.feature_grad_mult > 0: features = self.feature_extractor(source) if self.feature_grad_mult != 1.0: features = GradMultiply.apply(features, self.feature_grad_mult) else: with torch.no_grad(): features = self.feature_extractor(source) return features def forward_targets( self, features: torch.Tensor, target_list: List[torch.Tensor], ) -> Tuple[torch.Tensor, torch.Tensor]: # Trim features to ensure labels exist and then get aligned labels feat_tsz = features.size(2) targ_tsz = min([t.size(1) for t in target_list]) if self.feat2tar_ratio * feat_tsz > targ_tsz: feat_tsz = int(targ_tsz / self.feat2tar_ratio) features = features[..., :feat_tsz] target_inds = torch.arange(feat_tsz).float() * self.feat2tar_ratio target_inds += np.random.choice(int(self.feat2tar_ratio)) target_list = [t[:, target_inds.long()] for t in target_list] return features, target_list def forward_padding_mask( self, features: torch.Tensor, padding_mask: torch.Tensor, ) -> torch.Tensor: extra = padding_mask.size(1) % features.size(1) if extra > 0: padding_mask = padding_mask[:, :-extra] padding_mask = padding_mask.view(padding_mask.size(0), features.size(1), -1) padding_mask = padding_mask.all(-1) return padding_mask def get_normalized_probs( self, net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]], log_probs: bool, sample: Optional[Dict[str, Tensor]] = None, ): lprobs = self.get_normalized_probs_scriptable(net_output, log_probs, sample) lprobs.batch_first = True return lprobs def downsample_ctc_padding_mask(self, padding_mask): """ padding_mask: (B, T) """ stride = self.text_ctc_conv_kernel // 2 return padding_mask[:, ::stride] def compute_pred(self, proj_x, label_embs): if self.target_glu: label_embs = self.target_glu(label_embs) x = F.normalize(proj_x.float(), dim=-1) # (S, D) label_embs = F.normalize(label_embs.float(), dim=-1) # (C, D) logits = torch.matmul(x, label_embs.T).type_as(proj_x) # (S, C) logits /= self.logit_temp return logits def compute_hubert_logits(self, x, target, proj, label_embs, padding_mask, mask_indices): if not self.skip_masked: masked_indices = torch.logical_and(~padding_mask, mask_indices) proj_x_m = proj(x[masked_indices]) logit_m_list = [(self.compute_pred(proj_x_m, label_embs), target[masked_indices])] else: logit_m_list = [None] if not self.skip_nomask: nomask_indices = torch.logical_and(~padding_mask, ~mask_indices) proj_x_u = proj(x[nomask_indices]) logit_u_list = [(self.compute_pred(proj_x_u, label_embs), target[nomask_indices])] else: logit_u_list = [None] return logit_m_list, logit_u_list def convert_embeddings(self, x, padding_mask, target=None, mask_indices=None, mix_with_unit=False, use_pred_unit=False, l2_embedding=False, remask=False ): """ 1. Mix with units if needed (default: True) 2. Prepare for unit_encoder inputs Inputs: x, (B, T, D) Return: src_tokens, (B, T) soft_embeddings, (B, T, D) l2_loss, a loss """ soft_embeddings = self.final_proj_list[0](x) if x.size(-1) == self.final_dim else x if padding_mask is None: padding_mask = soft_embeddings.new_zeros(soft_embeddings.size(0), soft_embeddings.size(1), dtype=torch.long) if use_pred_unit: src_tokens = self.compute_pred(self.final_proj_list[0](x), self.label_embs_list[0]).argmax(dim=-1) src_tokens[padding_mask] = self.padding_idx elif target is not None: src_tokens = target else: src_tokens = padding_mask.long() if l2_embedding | mix_with_unit: unit_embeddings = self.unit_embed_tokens(src_tokens) # (B, T, D) l2_loss = 0 if l2_embedding: if mask_indices is not None: l2_loss = (soft_embeddings - unit_embeddings)[mask_indices].float().pow(2).mean(dim=-1) scale = unit_embeddings[mask_indices].float().pow(2).sum(dim=-1) else: l2_loss = (soft_embeddings - unit_embeddings).float().pow(2).mean(dim=-1) scale = unit_embeddings.float().pow(2).sum(dim=-1) l2_loss = (l2_loss / scale).mean() if mix_with_unit: B, T, D = x.shape selected_indices = compute_mask_indices( (B, T), padding_mask, self.mask_prob / 2, self.mask_length // 2, self.mask_selection, self.mask_other, min_masks=2, no_overlap=self.no_mask_overlap, min_space=self.mask_min_space, ) selected_indices = torch.from_numpy(selected_indices).to(x.device) if mask_indices is not None: if remask: remask_indices = torch.logical_and(selected_indices, mask_indices) soft_embeddings[remask_indices] = self.mask_emb swap_indices = torch.logical_and(selected_indices, ~mask_indices) else: swap_indices = selected_indices soft_embeddings[swap_indices] = unit_embeddings[swap_indices] soft_embeddings = soft_embeddings * (1 - padding_mask.unsqueeze(-1).type_as(x)) return src_tokens, soft_embeddings, l2_loss def forward( self, source: torch.Tensor = None, src_tokens: torch.Tensor = None, src_lengths: torch.Tensor = None, target_list: Optional[List[torch.Tensor]] = None, padding_mask: Optional[torch.Tensor] = None, mask: bool = True, features_only: bool = False, output_layer: Optional[int] = None, ) -> Dict[str, torch.Tensor]: assert source is not None or src_tokens is not None if source is not None: return self.forward_speech( source=source, target_list=target_list, padding_mask=padding_mask, mask=mask, features_only=features_only, output_layer=output_layer, ) else: return self.forward_text( src_tokens=src_tokens, src_lengths=src_lengths, mask=self.mask_u2t, output_layer=output_layer, ) def forward_speech( self, source: torch.Tensor = None, target_list: Optional[List[torch.Tensor]] = None, padding_mask: Optional[torch.Tensor] = None, mask: bool = True, features_only: bool = False, output_layer: Optional[int] = None, ) -> Dict[str, torch.Tensor]: """output layer is 1-based""" features = self.forward_features(source) if target_list is not None: features, target_list = self.forward_targets(features, target_list) features_pen = features.float().pow(2).mean() features = features.transpose(1, 2) features = self.layer_norm(features) unmasked_features = features.clone() if padding_mask is not None: padding_mask = self.forward_padding_mask(features, padding_mask) if self.post_extract_proj is not None: features = self.post_extract_proj(features) features = self.dropout_input(features) unmasked_features = self.dropout_features(unmasked_features) if mask: x, mask_indices = self.apply_mask(features, padding_mask, target_list) else: x = features mask_indices = None # feature: (B, T, D), float # target: (B, T), long # x: (B, T, D), float # padding_mask: (B, T), bool # mask_indices: (B, T), bool x, layer_results = self.encoder( x, padding_mask=padding_mask, layer=None if output_layer is None else output_layer - 1, ) if features_only: return {"x": x, "padding_mask": padding_mask, "features": features, "layer_results": layer_results} logit_m_list, logit_u_list = self.compute_hubert_logits( x, target_list[0], self.final_proj_list[0], self.label_embs_list[0], padding_mask, mask_indices, ) result = { "logit_m_list": logit_m_list, "logit_u_list": logit_u_list, "padding_mask": padding_mask, "features_pen": features_pen, } if self.add_unit_encoder: src_tokens, x_emb, l2_loss = self.convert_embeddings( x, padding_mask, target_list[0], mask_indices=mask_indices, mix_with_unit=self.mix_with_unit, use_pred_unit=self.use_pred_unit, l2_embedding=self.l2_embedding, ) encoder_out = self.unit_encoder(src_tokens, token_embeddings=x_emb) result['encoder_out'] = encoder_out['encoder_out'] # [(T, B, D)] result['encoder_padding_mask'] = encoder_out['encoder_padding_mask'] # [(B, T)] if self.l2_embedding: result['embedding_l2_loss'] = l2_loss code_logit_m_list, code_logit_u_list = self.compute_hubert_logits( encoder_out['encoder_out'][0].transpose(0, 1), target_list[-1], self.final_proj_list[-1], self.label_embs_list[-1], padding_mask, mask_indices, ) result['logit_m_list'] += code_logit_m_list result['logit_u_list'] += code_logit_u_list return result def forward_text( self, src_tokens: torch.Tensor = None, src_lengths: torch.Tensor = None, target_list: Optional[List[torch.Tensor]] = None, mask: bool = True, output_layer: Optional[int] = None, ) -> Dict[str, torch.Tensor]: assert self.add_unit_encoder, f"Can not forward unit-text branch without unit_encoder!" padding_mask = src_tokens == self.padding_idx unit_embeddings = self.unit_embed_tokens(src_tokens) if mask: unit_embeddings, mask_indices = self.apply_mask(unit_embeddings, padding_mask, [src_tokens]) else: ### If already applied mask on src_tokens, then the target_list should contains many padding_idx mask_indices = target_list[-1] != self.padding_idx unit_embeddings[mask_indices] = self.mask_emb encoder_out = self.unit_encoder( src_tokens, token_embeddings=unit_embeddings, return_all_hiddens=output_layer is not None, ) result = {} result["encoder_out"] = encoder_out["encoder_out"] result["encoder_states"] = encoder_out["encoder_states"] result["padding_mask"] = padding_mask if self.compute_mum: code_logit_m_list, code_logit_u_list = self.compute_hubert_logits( encoder_out["encoder_out"].transpose(0, 1), target_list[-1], self.final_proj_list[-1], self.label_embs_list[-1], padding_mask, mask_indices, ) result["logit_m_list"] = code_logit_m_list result["logit_u_list"] = code_logit_u_list if self.add_text_ctc: result["encoder_out_ctc"] = [self.unit_encoder_ctc_head(x) for x in encoder_out['encoder_out']] result["encoder_padding_mask"] = [ self.downsample_ctc_padding_mask(padding_mask) for padding_mask in encoder_out['encoder_padding_mask'] ] return result def extract_features( self, source: torch.Tensor, padding_mask: Optional[torch.Tensor] = None, mask: bool = False, ret_conv: bool = False, output_layer: Optional[int] = None, ret_layer_results: bool = False, ) -> Tuple[torch.Tensor, torch.Tensor]: """Extract features for only speech input""" with torch.no_grad(): res = self.forward( source, padding_mask=padding_mask, mask=mask, features_only=True, output_layer=output_layer, ) # {"x": x, "padding_mask": padding_mask, "features": features, "layer_results": layer_results} x = res["x"] # B x T x D padding_mask = res["padding_mask"] if self.add_unit_encoder and (output_layer is None or output_layer > self.cfg.encoder_layers): src_tokens, x, _ = self.convert_embeddings( x, padding_mask, mix_with_unit=False, use_pred_unit=False, ) return_all_hiddens=output_layer is not None and output_layer > self.cfg.encoder_layers encoder_out = self.unit_encoder( src_tokens, token_embeddings=x, return_all_hiddens=return_all_hiddens, ) res["x"] = encoder_out['encoder_out'][0].transpose(0, 1) # (B, T, D) if return_all_hiddens: res["layer_results"] += encoder_out['encoder_states'][1:1+output_layer-len(res["layer_results"])] feature = res["features"] if ret_conv else res["x"] if ret_layer_results: feature = (feature, res["layer_results"]) return feature, padding_mask def get_logits(self, net_output, is_masked=True): if is_masked: logits_list = net_output["logit_m_list"] else: logits_list = net_output["logit_u_list"] logits_list = [x[0].float() for x in logits_list if x is not None] return logits_list def get_targets(self, net_output, is_masked=True): if is_masked: logits_list = net_output["logit_m_list"] else: logits_list = net_output["logit_u_list"] targets_list = [x[1].long() for x in logits_list if x is not None] return targets_list def get_extra_losses(self, net_output): extra_losses = [] names = [] if "features_pen" in net_output: extra_losses.append(net_output["features_pen"]) names.append("features_pen") if "embedding_l2_loss" in net_output: extra_losses.append(net_output["embedding_l2_loss"]) names.append("embedding_l2_loss") return extra_losses, names def remove_pretraining_modules(self, step2=False): self.target_glu = None