Spaces:
Runtime error
Runtime error
File size: 11,078 Bytes
8b33290 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
# --------------------------------------------------------
# ArTST: Arabic Text and Speech Transform (https://arxiv.org/abs/2310.16621)
# Github source: https://github.com/mbzuai-nlp/ArTST
# Based on speecht5, fairseq and espnet code bases
# https://github.com/microsoft/SpeechT5/tree/main/SpeechT5; https://github.com/pytorch/fairseq; https://github.com/espnet/espnet
# --------------------------------------------------------
import math
import re
from dataclasses import dataclass, field
from typing import List, Optional
import torch
import torch.nn.functional as F
from fairseq import metrics, utils
from fairseq.criterions import FairseqCriterion
from artst.criterions.text_to_speech_loss import TexttoSpeechLoss, TexttoSpeechLossConfig
@dataclass
class SpeechPretrainCriterionConfig(TexttoSpeechLossConfig):
pred_masked_weight: float = field(
default=1.0,
metadata={"help": "weight for predictive loss for masked frames"},
)
pred_nomask_weight: float = field(
default=0.0,
metadata={"help": "weight for predictive loss for unmasked frames"},
)
loss_weights: Optional[List[float]] = field(
default_factory=lambda: [10,],
metadata={"help": "weights for additional loss terms (not first one)"},
)
log_keys: List[str] = field(
default_factory=lambda: [],
metadata={"help": "output keys to log"},
)
hubert_weight: float = field(
default=1.0,
metadata={"help": "weight of hubert loss"},
)
dec_weight: float = field(
default=1.0,
metadata={"help": "weight of decoder loss"},
)
class SpeechPretrainCriterion(FairseqCriterion):
def __init__(
self,
task,
sentence_avg,
pred_masked_weight,
pred_nomask_weight,
loss_weights=None,
log_keys=None,
use_masking=True,
use_weighted_masking=False,
loss_type="L1",
bce_pos_weight=5.0,
hubert_weight=1.0,
dec_weight=1.0,
):
super().__init__(task)
self.pred_masked_weight = pred_masked_weight
self.pred_nomask_weight = pred_nomask_weight
self.loss_weights = loss_weights
self.log_keys = [] if log_keys is None else log_keys
self.hubert_weight = hubert_weight
self.dec_weight = dec_weight
self.speech_criterion = TexttoSpeechLoss(
task,
sentence_avg,
use_masking,
use_weighted_masking,
loss_type,
bce_pos_weight,
)
def forward(self, model, sample, reduce=True, log_pred=False):
"""Compute the loss for the given sample.
Returns a tuple with three elements:
1) the loss
2) the sample size, which is used as the denominator for the gradient
3) logging outputs to display while training
"""
if self.dec_weight == 0:
sample["net_input"]["only_hubert"] = True
net_output, net_output_dec = model(target_list=sample["target_list"], **sample["net_input"])
loss = 0.
sample_size = 0
logging_output = {}
reduction = "sum" if reduce else "none"
loss_m_list = []
logp_m_list = model.get_logits(net_output, True)
targ_m_list = model.get_targets(None, net_output, True)
assert self.pred_masked_weight == 0 or len(logp_m_list) > 0
for i, (logp_m, targ_m) in enumerate(zip(logp_m_list, targ_m_list)):
loss_m = F.cross_entropy(logp_m, targ_m, reduction=reduction)
loss_m_list.append(loss_m)
logging_output[f"loss_m_{i}"] = loss_m.detach().item()
if self.pred_masked_weight > 0:
loss += self.pred_masked_weight * sum(loss_m_list)
sample_size += targ_m_list[0].numel()
loss_u_list = []
logp_u_list = model.get_logits(net_output, False)
targ_u_list = model.get_targets(None, net_output, False)
assert self.pred_nomask_weight == 0 or len(logp_u_list) > 0
for i, (logp_u, targ_u) in enumerate(zip(logp_u_list, targ_u_list)):
loss_u = F.cross_entropy(logp_u, targ_u, reduction=reduction)
loss_u_list.append(loss_u)
logging_output[f"loss_u_{i}"] = loss_u.detach().item()
if self.pred_nomask_weight > 0:
loss += self.pred_nomask_weight * sum(loss_u_list)
sample_size += targ_u_list[0].numel()
if self.loss_weights is not None:
assert hasattr(model, "get_extra_losses")
extra_losses, names = model.get_extra_losses(net_output)
if torch.is_tensor(extra_losses):
extra_losses = [extra_losses]
names = [names]
if len(self.loss_weights) == 1 and len(extra_losses) != 1:
self.loss_weights = [self.loss_weights[0]] * len(extra_losses)
if len(self.loss_weights) > len(extra_losses):
modified_loss_weight = self.loss_weights[:len(extra_losses)]
else:
modified_loss_weight = self.loss_weights
# assert len(extra_losses) == len(self.loss_weights), f"{len(extra_losses)}, {len(self.loss_weights)}"
for p, n, coef in zip(extra_losses, names, modified_loss_weight):
# print(n + str(coef))
if coef != 0 and p is not None:
p = coef * p.float() * sample_size
loss += p
logging_output[f"loss_{n}"] = p.detach().item()
logging_output = {
"ntokens": sample_size,
"nsentences": sample["id"].numel(),
"sample_size": sample_size,
"ngpu": 1,
**logging_output,
}
if 'loss_prob_perplexity' in logging_output:
logging_output['code_perplexity'] = net_output['code_perplexity'].detach().item()
for lk in self.log_keys:
if lk in net_output:
logging_output[lk] = float((net_output[lk].item()))
def compute_correct(logits):
if logits.numel() == 0:
return 0, 0
else:
assert logits.dim() > 1, logits.shape
max = logits.argmax(-1) == 0
min = logits.argmin(-1) == 0
both = max & min
corr = max.long().sum().item() - both.long().sum().item()
count = max.numel()
return corr, count
with torch.no_grad():
for i, logp_m in enumerate(logp_m_list):
corr_m, count_m = compute_correct(logp_m)
logging_output[f"correct_m_{i}"] = corr_m
logging_output[f"count_m_{i}"] = count_m
for i, logp_u in enumerate(logp_u_list):
corr_u, count_u = compute_correct(logp_u)
logging_output[f"correct_u_{i}"] = corr_u
logging_output[f"count_u_{i}"] = count_u
if self.dec_weight == 0.0:
logging_output["loss"] = loss.item() if reduce else loss
return loss, sample_size, logging_output
# ## dec loss
dec_loss, l1_loss, l2_loss, bce_loss, enc_dec_attn_loss = self.speech_criterion.compute_loss(model, net_output_dec, sample)
# Log tts loss
logging_output['dec_loss'] = dec_loss.item()
logging_output['l1_loss'] = l1_loss.item()
logging_output['l2_loss'] = l2_loss.item()
logging_output['bce_loss'] = bce_loss.item()
if enc_dec_attn_loss is not None:
logging_output['enc_dec_attn_loss'] = enc_dec_attn_loss.item()
loss = self.hubert_weight * loss + self.dec_weight * sample_size * dec_loss
logging_output["loss"] = loss.item() if reduce else loss
return loss, sample_size, logging_output
@staticmethod
def reduce_metrics(logging_outputs) -> None:
"""Aggregate logging outputs from data parallel training (copied from normal cross entropy)."""
loss_sum = sum(log.get("loss", 0) for log in logging_outputs)
ntokens = sum(log.get("ntokens", 0) for log in logging_outputs)
sample_size = sum(log.get("sample_size", 0) for log in logging_outputs)
dec_loss_sum = sum(log.get("dec_loss", 0) for log in logging_outputs)
l1_loss_sum = sum(log.get("l1_loss", 0) for log in logging_outputs)
l2_loss_sum = sum(log.get("l2_loss", 0) for log in logging_outputs)
bce_loss_sum = sum(log.get("bce_loss", 0) for log in logging_outputs)
ngpu = sum(log.get("ngpu", 0) for log in logging_outputs)
metrics.log_scalar("loss", loss_sum / sample_size / math.log(2), sample_size, round=3)
if sample_size != ntokens:
metrics.log_scalar("nll_loss", loss_sum / ntokens / math.log(2), ntokens, round=3)
metrics.log_derived("ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg))
else:
metrics.log_derived("ppl", lambda meters: utils.get_perplexity(meters["loss"].avg))
counts = {}
for lk in logging_outputs[0].keys():
if lk.startswith("count_"):
val = sum(log[lk] for log in logging_outputs)
metrics.log_scalar(lk, val)
counts[lk] = val
for lk in logging_outputs[0].keys():
if lk.startswith("loss_"):
val = sum(log[lk] for log in logging_outputs)
metrics.log_scalar(lk, val / sample_size / math.log(2), round=3)
elif lk.startswith("correct_"):
val = sum(log[lk] for log in logging_outputs)
metrics.log_scalar(lk, val / counts[re.sub("correct", "count", lk)])
elif lk == 'code_perplexity':
val = sum(log[lk] for log in logging_outputs)
metrics.log_scalar(lk, val / len(logging_outputs), round=3)
metrics.log_scalar(
"dec_loss", dec_loss_sum / ngpu, sample_size, 2, round=5
)
metrics.log_scalar(
"l1_loss", l1_loss_sum / ngpu, sample_size, 2, round=5
)
metrics.log_scalar(
"l2_loss", l2_loss_sum / ngpu, sample_size, 2, round=5
)
metrics.log_scalar(
"bce_loss", bce_loss_sum / ngpu, sample_size, 2, round=5
)
if "enc_dec_attn_loss" in logging_outputs[0]:
enc_dec_attn_loss_sum = sum(log.get("enc_dec_attn_loss", 0) for log in logging_outputs)
metrics.log_scalar(
"enc_dec_attn_loss", enc_dec_attn_loss_sum / ngpu, sample_size, round=8
)
@staticmethod
def aggregate_logging_outputs(logging_outputs):
"""Aggregate logging outputs from data parallel training."""
raise NotImplementedError()
@staticmethod
def logging_outputs_can_be_summed() -> bool:
"""
Whether the logging outputs returned by `forward` can be summed
across workers prior to calling `reduce_metrics`. Setting this
to True will improves distributed training speed.
"""
return False
|