| |
|
|
| from importlib.resources import files |
|
|
| from f5_tts.model import CFM, UNetT, DiT, Trainer |
| from f5_tts.model.utils import get_tokenizer |
| from f5_tts.model.dataset import load_dataset |
|
|
|
|
| |
|
|
| target_sample_rate = 24000 |
| n_mel_channels = 100 |
| hop_length = 256 |
|
|
| tokenizer = "pinyin" |
| tokenizer_path = None |
| dataset_name = "Emilia_ZH_EN" |
|
|
| |
|
|
| exp_name = "F5TTS_Base" |
|
|
| learning_rate = 7.5e-5 |
|
|
| batch_size_per_gpu = 38400 |
| batch_size_type = "frame" |
| max_samples = 64 |
| grad_accumulation_steps = 1 |
| max_grad_norm = 1.0 |
|
|
| epochs = 11 |
| num_warmup_updates = 20000 |
| save_per_updates = 50000 |
| last_per_steps = 5000 |
|
|
| |
| if exp_name == "F5TTS_Base": |
| wandb_resume_id = None |
| model_cls = DiT |
| model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4) |
| elif exp_name == "E2TTS_Base": |
| wandb_resume_id = None |
| model_cls = UNetT |
| model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4) |
|
|
|
|
| |
|
|
|
|
| def main(): |
| if tokenizer == "custom": |
| tokenizer_path = tokenizer_path |
| else: |
| tokenizer_path = dataset_name |
| vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer) |
|
|
| mel_spec_kwargs = dict( |
| target_sample_rate=target_sample_rate, |
| n_mel_channels=n_mel_channels, |
| hop_length=hop_length, |
| ) |
|
|
| model = CFM( |
| transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels), |
| mel_spec_kwargs=mel_spec_kwargs, |
| vocab_char_map=vocab_char_map, |
| ) |
|
|
| trainer = Trainer( |
| model, |
| epochs, |
| learning_rate, |
| num_warmup_updates=num_warmup_updates, |
| save_per_updates=save_per_updates, |
| checkpoint_path=str(files("f5_tts").joinpath(f"../../ckpts/{exp_name}")), |
| batch_size=batch_size_per_gpu, |
| batch_size_type=batch_size_type, |
| max_samples=max_samples, |
| grad_accumulation_steps=grad_accumulation_steps, |
| max_grad_norm=max_grad_norm, |
| wandb_project="CFM-TTS", |
| wandb_run_name=exp_name, |
| wandb_resume_id=wandb_resume_id, |
| last_per_steps=last_per_steps, |
| ) |
|
|
| train_dataset = load_dataset(dataset_name, tokenizer, mel_spec_kwargs=mel_spec_kwargs) |
| trainer.train( |
| train_dataset, |
| resumable_with_seed=666, |
| ) |
|
|
|
|
| if __name__ == "__main__": |
| main() |
|
|