M4xjunior commited on
Commit
4f64970
·
verified ·
1 Parent(s): e9a37c6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -14
app.py CHANGED
@@ -3,12 +3,14 @@ import numpy as np
3
  import random
4
  import spaces
5
  import torch
6
- from diffusers import DiffusionPipeline
 
7
 
8
  dtype = torch.bfloat16
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
 
11
- pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
 
12
 
13
  MAX_SEED = np.iinfo(np.int32).max
14
  MAX_IMAGE_SIZE = 2048
@@ -18,14 +20,19 @@ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_in
18
  if randomize_seed:
19
  seed = random.randint(0, MAX_SEED)
20
  generator = torch.Generator().manual_seed(seed)
21
- image = pipe(
22
- prompt = prompt,
23
- width = width,
24
- height = height,
25
- num_inference_steps = num_inference_steps,
26
- generator = generator,
27
- guidance_scale=0.0
28
- ).images[0]
 
 
 
 
 
29
  return image, seed
30
 
31
  examples = [
@@ -33,14 +40,12 @@ examples = [
33
  "a cat holding a sign that says hello world",
34
  "an anime illustration of a wiener schnitzel",
35
  ]
36
-
37
  css="""
38
  #col-container {
39
  margin: 0 auto;
40
  max-width: 520px;
41
  }
42
  """
43
-
44
  with gr.Blocks(css=css) as demo:
45
 
46
  with gr.Column(elem_id="col-container"):
@@ -111,12 +116,10 @@ with gr.Blocks(css=css) as demo:
111
  outputs = [result, seed],
112
  cache_examples="lazy"
113
  )
114
-
115
  gr.on(
116
  triggers=[run_button.click, prompt.submit],
117
  fn = infer,
118
  inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps],
119
  outputs = [result, seed]
120
  )
121
-
122
  demo.launch()
 
3
  import random
4
  import spaces
5
  import torch
6
+ # Substituindo a importação da DiffusionPipeline
7
+ from custom_pipeline import FLUXPipelineWithIntermediateOutputs
8
 
9
  dtype = torch.bfloat16
10
  device = "cuda" if torch.cuda.is_available() else "cpu"
11
 
12
+ # Instanciando a FLUXPipelineWithIntermediateOutputs
13
+ pipe = FLUXPipelineWithIntermediateOutputs.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
14
 
15
  MAX_SEED = np.iinfo(np.int32).max
16
  MAX_IMAGE_SIZE = 2048
 
20
  if randomize_seed:
21
  seed = random.randint(0, MAX_SEED)
22
  generator = torch.Generator().manual_seed(seed)
23
+
24
+ # Ajustando a chamada da função de inferência
25
+ for img in pipe.generate_images(
26
+ prompt=prompt,
27
+ width=width,
28
+ height=height,
29
+ num_inference_steps=num_inference_steps,
30
+ generator=generator,
31
+ guidance_scale=0.0,
32
+ output_type="pil" # Certifique-se que sua pipeline retorna imagens PIL
33
+ ):
34
+ image = img # Pegando a primeira imagem do iterador
35
+
36
  return image, seed
37
 
38
  examples = [
 
40
  "a cat holding a sign that says hello world",
41
  "an anime illustration of a wiener schnitzel",
42
  ]
 
43
  css="""
44
  #col-container {
45
  margin: 0 auto;
46
  max-width: 520px;
47
  }
48
  """
 
49
  with gr.Blocks(css=css) as demo:
50
 
51
  with gr.Column(elem_id="col-container"):
 
116
  outputs = [result, seed],
117
  cache_examples="lazy"
118
  )
 
119
  gr.on(
120
  triggers=[run_button.click, prompt.submit],
121
  fn = infer,
122
  inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps],
123
  outputs = [result, seed]
124
  )
 
125
  demo.launch()