# from huggingface_hub import from_pretrained_fastai import gradio as gr from fastai.vision.all import * from fastai.learner import load_learner from PIL import Image from albumentations import ( Compose, OneOf, ElasticTransform, GridDistortion, OpticalDistortion, HorizontalFlip, Rotate, Transpose, CLAHE, ShiftScaleRotate ) def get_y_fn (x): return Path(str(x).replace("Images","Labels").replace("color","gt").replace(".jpg",".png")) class SegmentationAlbumentationsTransform(ItemTransform): split_idx = 0 def __init__(self, aug): self.aug = aug def encodes(self, x): img,mask = x aug = self.aug(image=np.array(img), mask=np.array(mask)) return PILImage.create(aug["image"]), PILMask.create(aug["mask"]) class TargetMaskConvertTransform(ItemTransform): def __init__(self): pass def encodes(self, x): img,mask = x #Convert to array mask = np.array(mask) # mask[mask!=255]=0 # Change 255 for 1 mask[mask==255]=1 mask[mask==150]=2 mask[mask==74]=3 mask[mask==76]=3 mask[mask==29]=4 mask[mask==25]=4 # mask[mask==255]=1 # Back to PILMask mask = PILMask.create(mask) return img, mask # Carga el modelo después de definir la clase repo_id = "LuisCe/Practica03" learner = from_pretrained_fastai(repo_id) # Carga el modelo previamente entrenado model = learner.model model = model.cpu() model.eval() import torchvision.transforms as transforms def transform_image(image): my_transforms = transforms.Compose([transforms.ToTensor(), transforms.Normalize( [0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) image_aux = image return my_transforms(image_aux).unsqueeze(0).to(device) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def prediccion(img): img = Image.fromarray(img) image = transforms.Resize((480,640))(img) tensor = transform_image(image=image) model.to(device) with torch.no_grad(): outputs = model(tensor) outputs = torch.argmax(outputs,1) mask = np.array(outputs.cpu()) mask[mask==1]=255 mask[mask==2]=150 mask[mask==3]=74 mask[mask==4]=29 mask=np.reshape(mask,(480,640)) return(mask) # Crea la interfaz Gradio gr.Interface(prediccion, inputs="image", outputs="image", title="Grape Segmentation", description="Segment grapes in the image.", theme="compact", allow_flagging=False).launch(debug=True)