RasaBot / Dockerfile
Luigi's picture
add and apply llm intent classifier
0d2a25f
raw
history blame contribute delete
925 Bytes
# Use Python 3.8 slim
FROM python:3.8-slim
WORKDIR /app
# 2) Install Rasa 2.8.3 from source (patch typing-extensions)
RUN pip install --no-cache-dir 'protobuf<3.20.0' rasa==2.8.3 rasa-sdk==2.8.3
# 7) Copy in your Rasa project
COPY domain.yml config.yml endpoints.yml /app/
COPY data /app/data
COPY actions /app/actions
COPY custom_components /app/custom_components
# 9) Train your model (writes into /app/models)
RUN rasa train
# 10) Install Gradio v4 + HTTP client
COPY requirements.txt /app/requirements.txt
RUN pip install --no-cache-dir -r requirements.txt
RUN pip install --no-cache-dir numpy==1.19.5
RUN pip show numpy
# 11) Copy your Gradio wrapper
COPY app.py /app/app.py
# 12) Expose ports (actions, Rasa API, Gradio UI)
EXPOSE 5055 5005 7860
# 13) Launch everything: action server, Rasa REST API, then Gradio
ENTRYPOINT ["bash","-lc","rasa run actions & rasa run --enable-api --port 5005 & python app.py"]