File size: 1,974 Bytes
0d9a014 09583cb 0d9a014 34f4608 0d9a014 09583cb 0d9a014 378b225 59e8d1c 378b225 59e8d1c 378b225 59e8d1c 378b225 6f5c5a1 5281d1a 378b225 5281d1a 378b225 5281d1a 378b225 5281d1a 378b225 5281d1a 378b225 5281d1a 378b225 5281d1a 378b225 5281d1a 378b225 5281d1a 378b225 5281d1a 378b225 59e8d1c 378b225 59e8d1c 5281d1a 378b225 5281d1a 59e8d1c 6f5c5a1 59e8d1c 6f5c5a1 59e8d1c 378b225 5281d1a 6f5c5a1 5281d1a 378b225 5281d1a 6f5c5a1 5281d1a 378b225 5281d1a 378b225 5281d1a 378b225 5281d1a 378b225 5281d1a 378b225 5281d1a 378b225 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
---
title: RasaBot
emoji: 💬
colorFrom: yellow
colorTo: purple
sdk: docker
sdk_version: 5.35.0
app_file: app.py
pinned: false
license: mit
---
# RasaBot
## Project Overview
RasaBot is an intelligent chatbot leveraging Rasa (version 2.8.3) for conversational management and a classifier microservice built with FastAPI and Outlines. It is composed of two main components running in separate Docker containers:
* **Rasa Server**: Handles conversations using Rasa.
* **Classifier Microservice**: Classifies user intents using an LLM hosted by Together AI.
## Requirements
* Docker
* Docker Compose
* Together AI API Key
## Setup
### 1. Clone Repository
```bash
git clone <repository-url>
cd RasaBot
```
### 2. Provide Together AI API Key
Set the Together AI API Key as an environment variable:
```bash
export TOGETHERAI_API_KEY="your_together_ai_api_key_here"
```
Ensure this environment variable is set before running the classifier.
### 3. Build Docker Images
Execute the provided build script to create the necessary Docker images:
```bash
sh build.sh
```
### 4. Create Docker Network
Before running the services, create a Docker network named `rasa-net` to allow communication between the containers:
```bash
docker network create rasa-net
```
### 5. Run Services
Start the classifier service on the `rasa-net` network:
```bash
sh run_classifier.sh
```
Then, in a separate terminal, start the Rasa server on the `rasa-net` network:
```bash
sh run_rasa.sh
```
Your chatbot services will now be running locally and connected via the `rasa-net` network.
## Usage
Interact with the chatbot via the provided UI or API endpoints.
## Stopping Services
To stop the running services, press `Ctrl+C` in the respective terminals or stop the Docker containers manually.
## Notes
* The classifier microservice relies on Together AI for classification. Ensure the `TOGETHERAI_API_KEY` environment variable is properly configured to avoid runtime errors.
|