|
import gradio as gr |
|
from transformers import pipeline |
|
|
|
|
|
crop_pipe = pipeline("image-classification", model="LucyintheSky/pose-estimation-crop-uncrop") |
|
pose_pipe = pipeline("image-classification", model="LucyintheSky/pose-estimation-front-side-back") |
|
name_pipe = pipeline("image-classification", model="LucyintheSky/model-prediction") |
|
|
|
def classify(img): |
|
|
|
crop = crop_pipe(img) |
|
pose = pose_pipe(img) |
|
name = name_pipe(img) |
|
|
|
|
|
result = crop[0]['label'] + ' (' + str(int(float(crop[0]['score']) * 100)) + '%)\n' |
|
result += pose[0]['label'] + ' (' + str(int(float(pose[0]['score']) * 100)) + '%)\n' |
|
result += name[0]['label'] + ' (' + str(int(float(name[0]['score']) * 100)) + '%)' |
|
|
|
return result |
|
|
|
iface = gr.Interface(fn=classify, |
|
title='Product Photo Classifier', |
|
inputs=gr.Image(label='Image', type='filepath'), |
|
outputs=gr.Textbox(label='Classification'), |
|
examples=[['./images/1.jpg'],['./images/2.jpg'],['./images/3.jpg']], |
|
theme=gr.themes.Base(primary_hue=gr.themes.colors.pink, secondary_hue=gr.themes.colors.gray, neutral_hue=gr.themes.colors.slate, font=["avenir"])) |
|
iface.launch() |