import gradio as gr from transformers import pipeline # Load the model model_name = "knowledgator/comprehend_it-base" classifier = pipeline("zero-shot-classification", model=model_name, device="cpu") # Keywords associated with the "Value" label value_keywords = [ "cheap", "expensive", "worth", "waste", "value for money", "overpriced", "bargain", "affordable", "pricey", "costly", "economical", "deal", "rip-off", "budget-friendly", "high-priced", "low-priced", "discounted", "premium", "luxurious", "inexpensive", "priced right", "steal", "splurge", "bang for the buck", "investment", "saver", "money's worth", "exorbitant", "reasonable", "unreasonable", "priced well", "cost-effective", "overvalued", "undervalued", "fair price", "high cost", "low cost", "good deal", "bad deal", "profitable", "loss", "savings", "spendy", "wallet-friendly", "financially smart", "economic", "lavish", "modestly priced", "upscale", "downscale" ] # Function to check for value-related keywords in feedback def contains_value_keywords(feedback_text): for keyword in value_keywords: if keyword in feedback_text.lower(): return True return False # Function to classify feedback def classify_feedback(feedback_text): # Classify feedback using the loaded model labels = ["Value", "Facilities", "Experience", "Functionality", "Quality"] result = classifier(feedback_text, labels, multi_label=True) # Check for value-related keywords and adjust scores if necessary if contains_value_keywords(feedback_text): # Find the index of the "Value" label try: value_index = result["labels"].index("Value") # Promote the score of the "Value" label result["scores"][value_index] += 0.2 # Adjust the promotion strength as needed # Ensure the score does not exceed 1 result["scores"][value_index] = min(result["scores"][value_index], 1.0) except ValueError: pass # "Value" label not in the top results # Get the top two labels associated with the feedback, after possible adjustment top_labels_scores = sorted(zip(result["labels"], result["scores"]), key=lambda x: x[1], reverse=True)[:2] top_labels, scores = zip(*top_labels_scores) # Generate HTML content for displaying the scores as meters/progress bars html_content = "" for i in range(len(top_labels)): score_percentage = scores[i] * 100 # Convert score to percentage html_content += f"