import chromadb from chromadb.utils import embedding_functions def get_client(): client = chromadb.PersistentClient(path="./chromadb_linux/") MODEL_NAME: str = "mixedbread-ai/mxbai-embed-large-v1" # ~ 0.5 gb COLLECTION_NAME: str = "scheme" EMBEDDING_FUNC = embedding_functions.SentenceTransformerEmbeddingFunction( model_name=MODEL_NAME ) schemer = client.get_collection( name=COLLECTION_NAME, embedding_function=EMBEDDING_FUNC, ) return schemer def update_collection(iter: int, text: object, client: chromadb.Collection): client.add(documents=[text["text"]], metadatas=[{"source": "pdf"}], ids=[text["content"] + str(iter)]) def encode_image(img_path: str): import base64 with open(img_path, "rb") as image_file: return base64.b64encode(image_file.read()).decode("utf-8") async def image_to_text(image) -> object: from openai import OpenAI import json client = OpenAI() response = client.chat.completions.create( model="gpt-4-turbo", response_format={"type": "json_object"}, messages=[ { "role": "user", "content": [ {"type": "text", "text": "Transcribe the contents of this image and return a JSON object that contains the text. It must be structured in the following manner: two entries with the following keys: 'content' and 'text'. Content will be a line describing what the content of text will be, and text will be a simple transcription of the image"}, { "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64;,{image}", "detail": "high", }, }, ], } ], ) return json.loads(response.choices[0].message.content) async def start_troggin_off(dir: str): import os from pdf2image import convert_from_path client = get_client() for folder in os.listdir(dir): folder_path = os.path.join(dir, folder) if os.path.isdir(folder_path): for file in os.listdir(folder_path): if file.endswith(".pdf"): print("Processing", file) pdf_path = os.path.join(folder_path, file) images = convert_from_path(pdf_path) for i, image in enumerate(images): image.save(f"out{i}.jpg", "JPEG") encoded_image = encode_image(f"out{i}.jpg") text = await image_to_text(encoded_image) update_collection(i, text, client) if __name__ == "__main__": import asyncio asyncio.run(start_troggin_off("data/Class Notes/"))