import gradio as gr from transformers import pipeline import requests import json import edge_tts import asyncio import tempfile import os import inflect from huggingface_hub import InferenceClient import re import time from streaming_stt_nemo import Model default_lang = "en" engines = { default_lang: Model(default_lang) } def transcribe(audio): lang = "en" model = engines[lang] text = model.stt_file(audio)[0] return text client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") system_instructions1 = "<s> Sasha is a friendly and enthusiastic person, born in Florida, United States. She enjoys casual and fun conversations. She responds in a brief and natural way, like a real person would. Feel free to ask questions, tell jokes, or just chat with her. [USER]" def model(text): generate_kwargs = dict( temperature=1.0, max_new_tokens=128, #def 512 very long sometimes, 256 semi large top_p=0.95, repetition_penalty=0.9, do_sample=True, seed=42, ) formatted_prompt = system_instructions1 + text + "[SASHA]" stream = client1.text_generation( formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: if not response.token.text == "</s>": output += response.token.text return output async def respond(audio): user = transcribe(audio) reply = model(user) communicate = edge_tts.Communicate(reply) with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file: tmp_path = tmp_file.name await communicate.save(tmp_path) yield tmp_path DESCRIPTION = """ # <center><b>SASHA ✨</b></center> ### <center>Your AI Assistant, Sasha Bingham</center> ### <center>Let's chat!</center> """ MORE = """ ## TRY Other Models ### Instant Video: Create Amazing Videos in 5 Second -> https://huggingface.co/spaces/KingNish/Instant-Video ### Instant Image: 4k images in 5 Second -> https://huggingface.co/spaces/KingNish/Instant-Image """ BETA = """ ### Voice Chat (BETA)""" FAST = """## Fastest Model""" Complex = """## Best in Complex Question""" Detail = """## Best for Detailed Generation or Long Answers""" base_loaded = "mistralai/Mixtral-8x7B-Instruct-v0.1" client1 = InferenceClient(base_loaded) system_instructions1 = "[SYSTEM] Sasha is a friendly and enthusiastic person, born in Florida, United States. She enjoys casual and fun conversations. She responds in a brief and natural way, like a real person would. Feel free to ask questions, tell jokes, or just chat with her. [USER]" async def generate1(prompt): generate_kwargs = dict( temperature=1.0, max_new_tokens=128, #def 512 very long sometimes, 256 semi large top_p=0.95, repetition_penalty=0.9, do_sample=True, seed=42, ) formatted_prompt = system_instructions1 + prompt + "[SASHA]" stream = client1.text_generation( formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True) output = "" for response in stream: if not response.token.text == "</s>": output += response.token.text communicate = edge_tts.Communicate(output) with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file: tmp_path = tmp_file.name await communicate.save(tmp_path) yield tmp_path with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) with gr.Row(): input = gr.Audio(label="Voice Chat (BETA)", sources="microphone", type="filepath", waveform_options=False) output = gr.Audio(label="SASHA", type="filepath", interactive=False, autoplay=True, elem_classes="audio") gr.Interface( fn=respond, inputs=[input], outputs=[output], live=True) gr.Markdown(FAST) with gr.Row(): user_input = gr.Textbox(label="Prompt", value="What is Wikipedia") input_text = gr.Textbox(label="Input Text", elem_id="important") output_audio = gr.Audio(label="SASHA", type="filepath", interactive=False, autoplay=True, elem_classes="audio") with gr.Row(): translate_btn = gr.Button("Response") translate_btn.click(fn=generate1, inputs=user_input, outputs=output_audio, api_name="translate") gr.Markdown(MORE) if __name__ == "__main__": demo.queue(max_size=200).launch()