LofiAmazonSpace / app.py
vshulev's picture
Download ecolayers from HF dataset
b6a953e
import os
import pickle
import re
import PIL.Image
import pandas as pd
import numpy as np
import gradio as gr
from datasets import load_dataset
import matplotlib.pyplot as plt
from sklearn.manifold import TSNE
from sklearn.preprocessing import LabelEncoder
import torch
from torch import nn
from transformers import BertConfig, BertForMaskedLM, PreTrainedTokenizerFast
from huggingface_hub import PyTorchModelHubMixin, hf_hub_download
from pinecone import Pinecone
import rasterio
from rasterio.sample import sample_gen
from config import DEFAULT_INPUTS, MODELS, DATASETS, ID_TO_GENUS_MAP, LAYER_NAMES
# Download ecolayers from HF dataset
for image_name in LAYER_NAMES:
hf_hub_download(
repo_id="LofiAmazon/Global-Ecolayers",
filename=image_name,
repo_type="dataset",
local_dir=".",
)
# We need this for the eco layers because they are too big
PIL.Image.MAX_IMAGE_PIXELS = None
torch.set_grad_enabled(False)
# Configure pinecone
pc = Pinecone(api_key=os.getenv("PINECONE_API_KEY"))
pc_index = pc.Index("amazon")
# Load models
class DNASeqClassifier(nn.Module, PyTorchModelHubMixin):
def __init__(self, bert_model, env_dim, num_classes):
super(DNASeqClassifier, self).__init__()
self.bert = bert_model
self.env_dim = env_dim
self.num_classes = num_classes
self.fc = nn.Linear(768 + env_dim, num_classes)
def forward(self, bert_inputs, env_data):
outputs = self.bert(**bert_inputs)
dna_embeddings = outputs.hidden_states[-1].mean(1)
combined = torch.cat((dna_embeddings, env_data), dim=1)
logits = self.fc(combined)
return logits
tokenizer = PreTrainedTokenizerFast.from_pretrained(MODELS["embeddings"])
embeddings_model = BertForMaskedLM.from_pretrained(MODELS["embeddings"])
classification_model = DNASeqClassifier.from_pretrained(
MODELS["classification"],
bert_model=BertForMaskedLM(
BertConfig(vocab_size=259, output_hidden_states=True),
),
)
with open("scaler.pkl", "rb") as f:
scaler = pickle.load(f)
embeddings_model.eval()
classification_model.eval()
# Load datasets
amazon_ds = load_dataset(DATASETS["amazon"])['train'].to_pandas()
amazon_ds = amazon_ds[amazon_ds["genus"].notna()]
def set_default_inputs():
return (DEFAULT_INPUTS["dna_sequence"],
DEFAULT_INPUTS["latitude"],
DEFAULT_INPUTS["longitude"])
def preprocess(dna_sequence: str, latitude: float, longitude: float):
"""Prepares app input for downsteram tasks"""
# Preprocess the DNA sequence turning it into an embedding
dna_seq_preprocessed: str = re.sub(r"[^ACGT]", "N", dna_sequence)
dna_seq_preprocessed: str = re.sub(r"N+$", "", dna_sequence)
dna_seq_preprocessed = dna_seq_preprocessed[:660]
dna_seq_preprocessed = " ".join([
dna_seq_preprocessed[i:i+4] for i in range(0, len(dna_seq_preprocessed), 4)
])
dna_embedding: torch.Tensor = embeddings_model(
**tokenizer(dna_seq_preprocessed, return_tensors="pt")
).hidden_states[-1].mean(1).squeeze()
# Preprocess the location data
coords = (float(latitude), float(longitude))
return dna_embedding, coords[0], coords[1]
def tokenize(dna_sequence: str) -> dict[str, torch.Tensor]:
dna_seq_preprocessed: str = re.sub(r"[^ACGT]", "N", dna_sequence)
dna_seq_preprocessed: str = re.sub(r"N+$", "", dna_sequence)
dna_seq_preprocessed = dna_seq_preprocessed[:660]
dna_seq_preprocessed = " ".join([
dna_seq_preprocessed[i:i+4] for i in range(0, len(dna_seq_preprocessed), 4)
])
return tokenizer(dna_seq_preprocessed, return_tensors="pt")
def get_embedding(dna_sequence: str) -> torch.Tensor:
dna_embedding: torch.Tensor = embeddings_model(
**tokenize(dna_sequence)
).hidden_states[-1].mean(1).squeeze()
return dna_embedding
def predict_genus(method: str, dna_sequence: str, latitude: str, longitude: str):
coords = (float(latitude), float(longitude))
if method == "cosine":
embedding = get_embedding(dna_sequence)
result = pc_index.query(
namespace="all",
vector=embedding.tolist(),
top_k=10,
include_metadata=True,
)
top_k = [m["metadata"]["genus"] for m in result["matches"]]
top_k = pd.Series(top_k).value_counts()
top_k = top_k / top_k.sum()
if method == "fine_tuned_model":
bert_inputs = tokenize(dna_sequence)
env_data = []
for layer in LAYER_NAMES:
with rasterio.open(layer) as dataset:
# Get the corresponding ecological values for the samples
results = sample_gen(dataset, [coords])
results = [r for r in results]
layer_data = np.mean(results[0])
env_data.append(layer_data)
env_data = scaler.transform([env_data])
env_data = torch.from_numpy(env_data).to(torch.float32)
logits = classification_model(bert_inputs, env_data)
temperature = 0.2
probs = torch.softmax(logits / temperature, dim=1).squeeze()
top_k = torch.topk(probs, 10)
top_k = pd.Series(
top_k.values.detach().numpy(),
index=[ID_TO_GENUS_MAP[i] for i in top_k.indices.detach().numpy()]
)
# fig, ax = plt.subplots()
# ax.bar(top_k.index.astype(str), top_k.values)
# ax.set_ylim(0, 1)
# ax.set_title("Genus Prediction")
# ax.set_xlabel("Genus")
# ax.set_ylabel("Probability")
# ax.set_xticks(range(len(top_k)))
# ax.set_xticklabels(top_k.index.astype(str), rotation=90)
# fig.subplots_adjust(bottom=0.3)
# fig.canvas.draw()
# return PIL.Image.frombytes("RGB", fig.canvas.get_width_height(), fig.canvas.tostring_rgb())
return top_k
def genus_hist(method: str, dna_sequence: str, latitude: str, longitude: str):
top_k = predict_genus(method, dna_sequence, latitude, longitude)
fig, ax = plt.subplots()
ax.bar(top_k.index.astype(str), top_k.values)
ax.set_ylim(0, 1)
ax.set_title("Genus Prediction")
ax.set_xlabel("Genus")
ax.set_ylabel("Probability")
ax.set_xticks(range(len(top_k)))
ax.set_xticklabels(top_k.index.astype(str), rotation=90)
fig.subplots_adjust(bottom=0.3)
fig.canvas.draw()
return PIL.Image.frombytes("RGB", fig.canvas.get_width_height(), fig.canvas.tostring_rgb())
def cluster_dna(k: float):
df = amazon_ds
# df = df[df["genus"].notna()]
k = int(k)
genus_counts = df["genus"].value_counts()
top_genuses = genus_counts.head(k).index
df = df[df["genus"].isin(top_genuses)]
tsne = TSNE(
n_components=2, perplexity=30, learning_rate=200,
n_iter=1000, random_state=0,
)
X = np.stack(df["embeddings"].tolist())
y = df["genus"].tolist()
X_tsne = tsne.fit_transform(X)
label_encoder = LabelEncoder()
y_encoded = label_encoder.fit_transform(y)
classes = list(label_encoder.inverse_transform(range(len(df['genus'].unique()))))
fig, ax = plt.subplots()
plot = ax.scatter(X_tsne[:, 0], X_tsne[:, 1], c=y_encoded, cmap="tab20", alpha=0.7)
handles, _ = plot.legend_elements(prop='colors')
ax.legend(handles, classes)
ax.set_title(f"DNA Embedding Space (of {str(k)} most common genera)")
# Reduce unnecessary whitespace
ax.set_xlim(X_tsne[:, 0].min() - 0.1, X_tsne[:, 0].max() + 0.1)
fig.canvas.draw()
return PIL.Image.frombytes("RGB", fig.canvas.get_width_height(), fig.canvas.tostring_rgb())
def cluster_dna2(k: float, method: str, dna_sequence: str, latitude: str, longitude: str):
top_genuses = predict_genus(method, dna_sequence, latitude, longitude)
embed = get_embedding(dna_sequence).tolist()
# df = amazon_ds["train"].to_pandas()
df = amazon_ds
# df = df[df["genus"].notna()]
k = int(k)
# genus_counts = df["genus"].value_counts()
top_genuses = top_genuses.head(k).index
df = df[df["genus"].isin(top_genuses)]
tsne = TSNE(
n_components=2, perplexity=5, learning_rate=200,
n_iter=1000, random_state=0,
)
X = np.vstack([df['embeddings'].tolist(), embed])
# X = np.stack(df["embeddings"].tolist())
y = df["genus"].tolist()
X_tsne = tsne.fit_transform(X)
tsne_embed_space = X_tsne[:-1]
tsne_single = X_tsne[-1]
label_encoder = LabelEncoder()
y_encoded = label_encoder.fit_transform(y)
classes = list(label_encoder.inverse_transform(range(len(df['genus'].unique()))))
fig, ax = plt.subplots()
plot = ax.scatter(tsne_embed_space[:, 0], tsne_embed_space[:, 1], c=y_encoded, cmap="tab20", alpha=0.7)
ax.scatter(tsne_single[0], tsne_single[1], color='red', edgecolor='black')
handles, _ = plot.legend_elements(prop='colors')
ax.legend(handles, classes)
# ax.legend(loc='best')
ax.text(tsne_single[0], tsne_single[1], 'Your DNA Seq', fontsize=10, color='black')
ax.set_title(f"DNA Embedding Space Around Your DNA's Embedding")
# Reduce unnecessary whitespace
ax.set_xlim(X_tsne[:, 0].min() + 0.1, X_tsne[:, 0].max() + 0.1)
fig.canvas.draw()
return PIL.Image.frombytes("RGB", fig.canvas.get_width_height(), fig.canvas.tostring_rgb())
with gr.Blocks() as demo:
# Header section
gr.Markdown(("""
# DNA Identifier Tool
Welcome to Lofi Amazon Beats' DNA Identifier Tool. Please enter a DNA
sequence and the coordinates at which its sample was taken to get
started. Click 'I'm feeling lucky' to see use a random sequence.
For more information on how to use check out our
[README](https://huggingface.co/spaces/LofiAmazon/LofiAmazonSpace/blob/main/README.md)
"""))
with gr.Row():
with gr.Column():
inp_dna = gr.Textbox(label="DNA", placeholder="e.g. AACAATGTA... (min 200 and max 660 characters)")
with gr.Column():
with gr.Row():
inp_lat = gr.Textbox(label="Latitude", placeholder="e.g. 2.009083")
with gr.Row():
inp_lng = gr.Textbox(label="Longitude", placeholder="e.g. -41.68281")
with gr.Row():
btn_defaults = gr.Button("I'm feeling lucky")
btn_defaults.click(fn=set_default_inputs, outputs=[inp_dna, inp_lat, inp_lng])
with gr.Tab("Genus Prediction"):
gr.Markdown("""
## Genus prediction
A demo of predicting the genus of a DNA sequence using multiple
approaches (method dropdown):
- **fine_tuned_model**: uses our
`LofiAmazon/BarcodeBERT-Finetuned-Amazon` model which predicts the genus
based on the DNA sequence and environmental data.
- **cosine**: computes a cosine similarity between the DNA sequence
embedding generated by our model and the embeddings of known samples
that we precomputed and stored. This method DOES NOT use ecological layer data.
""")
with gr.Row():
with gr.Column():
method_dropdown = gr.Dropdown(
choices=["cosine", "fine_tuned_model"], value="fine_tuned_model",
)
predict_button = gr.Button("Predict Genus")
with gr.Column():
genus_output = gr.Image()
predict_button.click(
fn=genus_hist,
inputs=[method_dropdown, inp_dna, inp_lat, inp_lng],
outputs=genus_output
)
with gr.Tab("DNA Embedding Space Visualizer"):
gr.Markdown("""
## DNA Embedding Space Visualizer
Use this tool to visualize how our DNA Transformer model
learns to cluster similar DNA sequences together.
""")
# with gr.Row():
# with gr.Column():
# top_k_slider = gr.Slider(
# minimum=1, maximum=10, step=1, value=5,
# label="Choose **k**, the number of top genera to visualize",
# )
# visualize_button = gr.Button("Visualize Embedding Space")
# with gr.Column():
# visualize_output = gr.Image()
# visualize_button.click(
# fn=cluster_dna,
# inputs=top_k_slider,
# outputs=visualize_output
# )
with gr.Row():
top_k_slider = gr.Slider(
minimum=1, maximum=10, step=1, value=5,
label="Choose **k**, the number of top genera to visualize",
)
visualize_button = gr.Button("Visualize Embedding Space")
with gr.Row():
with gr.Column():
gr.Markdown("""
t-SNE plot of the DNA embedding spaces of the **k** most common
genera in our dataset.
""")
visualize_output = gr.Image()
visualize_button.click(
fn=cluster_dna,
inputs=top_k_slider,
outputs=visualize_output
)
with gr.Column():
gr.Markdown("""
t-SNE plot of the DNA embedding spaces of the **k** most likely
genera for the DNA sequence you provided.
""")
visualize_output2 = gr.Image()
visualize_button.click(
fn=cluster_dna2,
inputs=[top_k_slider, method_dropdown, inp_dna, inp_lat, inp_lng],
outputs=visualize_output2
)
demo.launch()