import torch import gradio as gr import argparse from utils import load_hyperparam, load_model from models.tokenize import Tokenizer from models.llama import * from generate import LmGeneration args = None lm_generation = None def init_args(): global args parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) args = parser.parse_args() args.load_model_path = './model_file/chatllama_7b.bin' args.config_path = './config/llama_7b.json' args.spm_model_path = './model_file/tokenizer.model' args.batch_size = 1 args.seq_length = 512 args.world_size = 1 args.use_int8 = True args.top_p = 0 args.repetition_penalty_range = 1024 args.repetition_penalty_slope = 0 args.repetition_penalty = 1.15 args = load_hyperparam(args) args.tokenizer = Tokenizer(model_path=args.spm_model_path) args.vocab_size = args.tokenizer.sp_model.vocab_size() def init_model(): global lm_generation torch.set_default_tensor_type(torch.HalfTensor) model = LLaMa(args) torch.set_default_tensor_type(torch.FloatTensor) model = load_model(model, args.load_model_path) model.eval() for name, parameter in model.named_parameters(): print(name) print(parameter) print(torch.cuda.max_memory_allocated() / 1024 ** 3) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) lm_generation = LmGeneration(model, args.tokenizer) def chat(prompt, top_k, temperature): args.top_k = int(top_k) args.temperature = temperature response = lm_generation.generate(args, [prompt]) return response[0] if __name__ == '__main__': init_args() init_model() demo = gr.Interface( fn=chat, inputs=["text", gr.Slider(1, 60, value=40, step=1), gr.Slider(0.1, 2.0, value=1.2, step=0.1)], outputs="text", ) demo.launch()