Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,14 +4,20 @@ os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
|
|
4 |
|
5 |
import torch
|
6 |
import gradio as gr
|
7 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
|
10 |
def init_model():
|
11 |
model = AutoModelForCausalLM.from_pretrained("Linly-AI/Chinese-LLaMA-2-7B-hf", device_map="cuda:0",
|
12 |
torch_dtype=torch.bfloat16, trust_remote_code=True)
|
13 |
tokenizer = AutoTokenizer.from_pretrained("Linly-AI/Chinese-LLaMA-2-7B-hf", use_fast=False, trust_remote_code=True)
|
14 |
-
|
|
|
15 |
|
16 |
|
17 |
def process(message, history):
|
@@ -19,29 +25,31 @@ def process(message, history):
|
|
19 |
for interaction in history:
|
20 |
input_prompt = f"{input_prompt} User: {str(interaction[0]).strip(' ')} Bot: {str(interaction[1]).strip(' ')}"
|
21 |
input_prompt = f"{input_prompt} ### Instruction:{message.strip()} ### Response:"
|
|
|
22 |
inputs = tokenizer(input_prompt, return_tensors="pt").to("cuda:0")
|
|
|
|
|
|
|
23 |
try:
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
except:
|
32 |
-
|
|
|
33 |
|
34 |
|
35 |
if __name__ == '__main__':
|
36 |
-
|
37 |
-
|
38 |
-
"如何使用ssh -L,请用具体例子说明",
|
39 |
-
"应对压力最有效的方法是什么?"]
|
40 |
-
model, tokenizer = init_model()
|
41 |
demo = gr.ChatInterface(
|
42 |
process,
|
43 |
-
chatbot=gr.Chatbot(height=600),
|
44 |
-
textbox=gr.Textbox(placeholder="Input", container=
|
45 |
title="Linly ChatFlow",
|
46 |
description="",
|
47 |
theme="soft",
|
@@ -51,4 +59,4 @@ if __name__ == '__main__':
|
|
51 |
undo_btn="Delete Previous",
|
52 |
clear_btn="Clear",
|
53 |
)
|
54 |
-
demo.queue(
|
|
|
4 |
|
5 |
import torch
|
6 |
import gradio as gr
|
7 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
8 |
+
from threading import Thread
|
9 |
+
|
10 |
+
examples = ["Python和JavaScript编程语言的主要区别是什么?", "影响消费者行为的主要因素是什么?", "请用pytorch实现一个带ReLU激活函数的全连接层的代码",
|
11 |
+
"请用C++编程语言实现“给你两个字符串haystack和needle,在haystack字符串中找出needle字符串的第一个匹配项的下标(下标从 0 开始)。如果needle不是haystack的一部分,则返回-1。",
|
12 |
+
"如何使用ssh -L,请用具体例子说明", "应对压力最有效的方法是什么?"]
|
13 |
|
14 |
|
15 |
def init_model():
|
16 |
model = AutoModelForCausalLM.from_pretrained("Linly-AI/Chinese-LLaMA-2-7B-hf", device_map="cuda:0",
|
17 |
torch_dtype=torch.bfloat16, trust_remote_code=True)
|
18 |
tokenizer = AutoTokenizer.from_pretrained("Linly-AI/Chinese-LLaMA-2-7B-hf", use_fast=False, trust_remote_code=True)
|
19 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=30.)
|
20 |
+
return model, tokenizer, streamer
|
21 |
|
22 |
|
23 |
def process(message, history):
|
|
|
25 |
for interaction in history:
|
26 |
input_prompt = f"{input_prompt} User: {str(interaction[0]).strip(' ')} Bot: {str(interaction[1]).strip(' ')}"
|
27 |
input_prompt = f"{input_prompt} ### Instruction:{message.strip()} ### Response:"
|
28 |
+
|
29 |
inputs = tokenizer(input_prompt, return_tensors="pt").to("cuda:0")
|
30 |
+
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=2048, do_sample=True,
|
31 |
+
top_k=20, top_p=0.84, temperature=1.0, repetition_penalty=1.15, eos_token_id=2,
|
32 |
+
bos_token_id=1, pad_token_id=0)
|
33 |
try:
|
34 |
+
t = Thread(target=model.generate, kwargs=generation_kwargs)
|
35 |
+
t.start()
|
36 |
+
response = ""
|
37 |
+
for text in streamer:
|
38 |
+
response += text
|
39 |
+
yield response
|
40 |
+
print('-log:', response)
|
41 |
+
except Exception as e:
|
42 |
+
print('-error:', str(e))
|
43 |
+
return "Error: 遇到错误,请开启新的会话重新尝试~"
|
44 |
|
45 |
|
46 |
if __name__ == '__main__':
|
47 |
+
model, tokenizer, streamer = init_model()
|
48 |
+
|
|
|
|
|
|
|
49 |
demo = gr.ChatInterface(
|
50 |
process,
|
51 |
+
chatbot=gr.Chatbot(height=600, show_label=True, label="Linly"),
|
52 |
+
textbox=gr.Textbox(placeholder="Input", container=True, scale=7, lines=3, show_label=False),
|
53 |
title="Linly ChatFlow",
|
54 |
description="",
|
55 |
theme="soft",
|
|
|
59 |
undo_btn="Delete Previous",
|
60 |
clear_btn="Clear",
|
61 |
)
|
62 |
+
demo.queue().launch()
|