# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch BERT model.""" from __future__ import absolute_import, division, print_function, unicode_literals import copy import json import logging import math import os import shutil import tarfile import tempfile import sys from io import open from torchcrf import CRF import torch from torch import nn from torch.nn import CrossEntropyLoss import torch.nn.functional as F from torch.autograd import Variable logger = logging.getLogger(__name__) def gelu(x): """Implementation of the gelu activation function. For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) Also see https://arxiv.org/abs/1606.08415 """ return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) def swish(x): return x * torch.sigmoid(x) ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish} from transformers import RobertaModel from transformers.models.roberta.modeling_roberta import RobertaLayer, RobertaPreTrainedModel, RobertaOutput, \ RobertaSelfOutput, RobertaIntermediate class RobertaSelfEncoder(nn.Module): def __init__(self, config): super(RobertaSelfEncoder, self).__init__() layer = RobertaLayer(config) self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(1)]) def forward(self, hidden_states, attention_mask, output_all_encoded_layers=True): all_encoder_layers = [] for layer_module in self.layer: hidden_states = layer_module(hidden_states, attention_mask) if output_all_encoded_layers: all_encoder_layers.append(hidden_states) if not output_all_encoded_layers: all_encoder_layers.append(hidden_states) return all_encoder_layers class RobertaCrossEncoder(nn.Module): def __init__(self, config, layer_num): super(RobertaCrossEncoder, self).__init__() layer = RobertaCrossAttentionLayer(config) self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(layer_num)]) def forward(self, s1_hidden_states, s2_hidden_states, s2_attention_mask, output_all_encoded_layers=True): all_encoder_layers = [] for layer_module in self.layer: s1_hidden_states = layer_module(s1_hidden_states, s2_hidden_states, s2_attention_mask) if output_all_encoded_layers: all_encoder_layers.append(s1_hidden_states) if not output_all_encoded_layers: all_encoder_layers.append(s1_hidden_states) return all_encoder_layers class RobertaCoAttention(nn.Module): def __init__(self, config): super(RobertaCoAttention, self).__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( "The hidden size (%d) is not a multiple of the number of attention " "heads (%d)" % (config.hidden_size, config.num_attention_heads)) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, s1_hidden_states, s2_hidden_states, s2_attention_mask): mixed_query_layer = self.query(s1_hidden_states) mixed_key_layer = self.key(s2_hidden_states) mixed_value_layer = self.value(s2_hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_scores = attention_scores + s2_attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.Softmax(dim=-1)(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) return context_layer class RobertaCrossAttention(nn.Module): def __init__(self, config): super(RobertaCrossAttention, self).__init__() self.self = RobertaCoAttention(config) self.output = RobertaSelfOutput(config) def forward(self, s1_input_tensor, s2_input_tensor, s2_attention_mask): s1_cross_output = self.self(s1_input_tensor, s2_input_tensor, s2_attention_mask) attention_output = self.output(s1_cross_output, s1_input_tensor) return attention_output class RobertaCrossAttentionLayer(nn.Module): def __init__(self, config): super(RobertaCrossAttentionLayer, self).__init__() self.attention = RobertaCrossAttention(config) self.intermediate = RobertaIntermediate(config) self.output = RobertaOutput(config) def forward(self, s1_hidden_states, s2_hidden_states, s2_attention_mask): attention_output = self.attention(s1_hidden_states, s2_hidden_states, s2_attention_mask) intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output class UMT(RobertaPreTrainedModel): """Coupled Cross-Modal Attention BERT model for token-level classification with CRF on top. """ def __init__(self, config, layer_num1=1, layer_num2=1, layer_num3=1, num_labels_=2, auxnum_labels=2): super(UMT, self).__init__(config) self.num_labels = num_labels_ self.roberta = RobertaModel(config) # self.trans_matrix = torch.zeros(num_labels, auxnum_labels) self.self_attention = RobertaSelfEncoder(config) self.self_attention_v2 = RobertaSelfEncoder(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.vismap2text = nn.Linear(2048, config.hidden_size) self.vismap2text_v2 = nn.Linear(2048, config.hidden_size) self.txt2img_attention = RobertaCrossEncoder(config, layer_num1) self.img2txt_attention = RobertaCrossEncoder(config, layer_num2) self.txt2txt_attention = RobertaCrossEncoder(config, layer_num3) self.gate = nn.Linear(config.hidden_size * 2, config.hidden_size) ### self.self_attention = BertLastSelfAttention(config) self.classifier = nn.Linear(config.hidden_size * 2, num_labels_) self.aux_classifier = nn.Linear(config.hidden_size, auxnum_labels) self.crf = CRF(num_labels_, batch_first=True) self.aux_crf = CRF(auxnum_labels, batch_first=True) self.init_weights() # this forward is just for predict, not for train # dont confuse this with _forward_alg above. def forward(self, input_ids, segment_ids, input_mask, added_attention_mask, visual_embeds_att, trans_matrix, labels=None, auxlabels=None): # Get the emission scores from the BiLSTM features = self.roberta(input_ids, token_type_ids=segment_ids, attention_mask=input_mask) # batch_size * seq_len * hidden_size sequence_output = features["last_hidden_state"] sequence_output = self.dropout(sequence_output) extended_txt_mask = input_mask.unsqueeze(1).unsqueeze(2) extended_txt_mask = extended_txt_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility extended_txt_mask = (1.0 - extended_txt_mask) * -10000.0 aux_addon_sequence_encoder = self.self_attention(sequence_output, extended_txt_mask) aux_addon_sequence_output = aux_addon_sequence_encoder[-1] aux_addon_sequence_output = aux_addon_sequence_output[0] aux_bert_feats = self.aux_classifier(aux_addon_sequence_output) #######aux_bert_feats = self.aux_classifier(sequence_output) trans_matrix_tensor = torch.tensor(trans_matrix, dtype=torch.float32, device=aux_bert_feats.device) trans_bert_feats = torch.matmul(aux_bert_feats, trans_matrix_tensor) # trans_bert_feats = torch.matmul(aux_bert_feats, trans_matrix.float()) main_addon_sequence_encoder = self.self_attention_v2(sequence_output, extended_txt_mask) main_addon_sequence_output = main_addon_sequence_encoder[-1] main_addon_sequence_output = main_addon_sequence_output[0] vis_embed_map = visual_embeds_att.view(-1, 2048, 49).permute(0, 2, 1) # self.batch_size, 49, 2048 converted_vis_embed_map = self.vismap2text(vis_embed_map) # self.batch_size, 49, hidden_dim # ''' # apply txt2img attention mechanism to obtain image-based text representations img_mask = added_attention_mask[:, :49] extended_img_mask = img_mask.unsqueeze(1).unsqueeze(2) extended_img_mask = extended_img_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility extended_img_mask = (1.0 - extended_img_mask) * -10000.0 cross_encoder = self.txt2img_attention(main_addon_sequence_output, converted_vis_embed_map, extended_img_mask) cross_output_layer = cross_encoder[-1] # self.batch_size * text_len * hidden_dim # apply img2txt attention mechanism to obtain multimodal-based text representations converted_vis_embed_map_v2 = self.vismap2text_v2(vis_embed_map) # self.batch_size, 49, hidden_dim cross_txt_encoder = self.img2txt_attention(converted_vis_embed_map_v2, main_addon_sequence_output, extended_txt_mask) cross_txt_output_layer = cross_txt_encoder[-1] # self.batch_size * 49 * hidden_dim cross_final_txt_encoder = self.txt2txt_attention(main_addon_sequence_output, cross_txt_output_layer, extended_img_mask) ##cross_final_txt_encoder = self.txt2txt_attention(aux_addon_sequence_output, cross_txt_output_layer, extended_img_mask) cross_final_txt_layer = cross_final_txt_encoder[-1] # self.batch_size * text_len * hidden_dim # cross_final_txt_layer = torch.add(cross_final_txt_layer, sequence_output) # visual gate merge_representation = torch.cat((cross_final_txt_layer, cross_output_layer), dim=-1) gate_value = torch.sigmoid(self.gate(merge_representation)) # batch_size, text_len, hidden_dim gated_converted_att_vis_embed = torch.mul(gate_value, cross_output_layer) # reverse_gate_value = torch.neg(gate_value).add(1) # gated_converted_att_vis_embed = torch.add(torch.mul(reverse_gate_value, cross_final_txt_layer), # torch.mul(gate_value, cross_output_layer)) # direct concatenation # gated_converted_att_vis_embed = self.dropout(gated_converted_att_vis_embed) final_output = torch.cat((cross_final_txt_layer, gated_converted_att_vis_embed), dim=-1) ###### final_output = self.dropout(final_output) # middle_output = torch.cat((cross_final_txt_layer, gated_converted_att_vis_embed), dim=-1) # final_output = torch.cat((sequence_output, middle_output), dim=-1) ###### addon_sequence_output = self.self_attention(final_output, extended_txt_mask) bert_feats = self.classifier(final_output) alpha = 0.5 final_bert_feats = torch.add(torch.mul(bert_feats, alpha), torch.mul(trans_bert_feats, 1 - alpha)) # suggested by Hongjie # bert_feats = F.log_softmax(bert_feats, dim=-1) if labels is not None: beta = 0.5 # 73.87(73.50) 85.37(85.00) 0.5 5e-5 #73.45 85.05 1.0 1 1 1 4e-5 # 73.63 0.1 1 1 1 5e-5 # old 0.1 2 1 1 85.23 0.2 1 1 85.04 ##beta = 0.6 aux_loss = - self.aux_crf(aux_bert_feats, auxlabels, mask=input_mask.byte(), reduction='mean') main_loss = - self.crf(final_bert_feats, labels, mask=input_mask.byte(), reduction='mean') loss = main_loss + beta * aux_loss return loss else: pred_tags = self.crf.decode(final_bert_feats, mask=input_mask.byte()) return pred_tags