from transformers import RobertaConfig, AutoConfig from transformers import AutoTokenizer, AutoModelForTokenClassification from Model.NER.VLSP2021.Ner_CRF import PhoBertCrf,PhoBertSoftmax,PhoBertLstmCrf from Model.NER.VLSP2021.Predict_Ner import ViTagger import torch from spacy import displacy import re device = 'cuda' if torch.cuda.is_available() else 'cpu' MODEL_MAPPING = { 'vinai/phobert-base': { 'softmax': PhoBertSoftmax, 'crf': PhoBertCrf, 'lstm_crf': PhoBertLstmCrf }, } if device == 'cpu': checkpoint_data = torch.load('E:/demo_datn/pythonProject1/Model/NER/VLSP2016/best_model.pt', map_location='cpu') else: checkpoint_data = torch.load('E:/demo_datn/pythonProject1/Model/NER/VLSP2016/best_model.pt') configs = checkpoint_data['args'] print(configs.model_name_or_path) tokenizer = AutoTokenizer.from_pretrained(configs.model_name_or_path) model_clss = MODEL_MAPPING[configs.model_name_or_path][configs.model_arch] config = AutoConfig.from_pretrained(configs.model_name_or_path, num_labels=len(checkpoint_data['classes']), finetuning_task=configs.task) model = model_clss(config=config) model.resize_token_embeddings(len(tokenizer)) model.to(device) model.load_state_dict(checkpoint_data['model'],strict=False) print(model)