|
import streamlit as st
|
|
import os
|
|
|
|
st.title("Vietnamese Multimodel NER")
|
|
def save_uploaded_image(image, directory):
|
|
if not os.path.exists(directory):
|
|
os.makedirs(directory)
|
|
file_path = os.path.join(directory, image.name)
|
|
with open(file_path, "wb") as f:
|
|
f.write(image.getbuffer())
|
|
return file_path
|
|
|
|
|
|
st.sidebar.title('Selection')
|
|
page = st.sidebar.selectbox("Choose a page", ["NER", "Multimodal NER"])
|
|
|
|
|
|
if page == "NER":
|
|
st.header("NER")
|
|
text = st.text_area("Enter your text for NER:", height=300)
|
|
if st.button("Process NER"):
|
|
st.write("Processing text with NER model...")
|
|
|
|
st.write(f"Input text: {text}")
|
|
|
|
|
|
elif page == "Multimodal NER":
|
|
st.header("Multimodal NER")
|
|
text = st.text_area("Enter your text for Multimodal NER:", height=300)
|
|
image = st.file_uploader("Upload an image:", type=["png", "jpg", "jpeg"])
|
|
if st.button("Process Multimodal NER"):
|
|
st.write("Processing text and image with Multimodal NER model...")
|
|
|
|
st.write(f"Input text: {text}")
|
|
if image:
|
|
save_path='E:/demo_datn/pythonProject1/Model/MultimodelNER/VLSP2016/Image'
|
|
image_name = image.name
|
|
print(image_name)
|
|
saved_image_path = save_uploaded_image(image, save_path)
|
|
|
|
st.image(image, caption="Uploaded Image", use_column_width=True)
|
|
else:
|
|
st.write("No image uploaded.")
|
|
|