|
|
|
from vncorenlp import VnCoreNLP
|
|
|
|
from typing import Union
|
|
from transformers import AutoConfig, AutoTokenizer
|
|
from Model.NER.VLSP2021.Ner_CRF import PhoBertCrf,PhoBertSoftmax,PhoBertLstmCrf
|
|
import re
|
|
import os
|
|
import torch
|
|
import itertools
|
|
import numpy as np
|
|
|
|
MODEL_MAPPING = {
|
|
'vinai/phobert-base': {
|
|
'softmax': PhoBertSoftmax,
|
|
'crf': PhoBertCrf,
|
|
'lstm_crf': PhoBertLstmCrf
|
|
},
|
|
}
|
|
|
|
|
|
def normalize_text(txt: str) -> str:
|
|
|
|
txt = re.sub("\xad|\u200b|\ufeff", "", txt)
|
|
|
|
txt = re.sub(r"òa", "oà", txt)
|
|
txt = re.sub(r"óa", "oá", txt)
|
|
txt = re.sub(r"ỏa", "oả", txt)
|
|
txt = re.sub(r"õa", "oã", txt)
|
|
txt = re.sub(r"ọa", "oạ", txt)
|
|
txt = re.sub(r"òe", "oè", txt)
|
|
txt = re.sub(r"óe", "oé", txt)
|
|
txt = re.sub(r"ỏe", "oẻ", txt)
|
|
txt = re.sub(r"õe", "oẽ", txt)
|
|
txt = re.sub(r"ọe", "oẹ", txt)
|
|
txt = re.sub(r"ùy", "uỳ", txt)
|
|
txt = re.sub(r"úy", "uý", txt)
|
|
txt = re.sub(r"ủy", "uỷ", txt)
|
|
txt = re.sub(r"ũy", "uỹ", txt)
|
|
txt = re.sub(r"ụy", "uỵ", txt)
|
|
txt = re.sub(r"Ủy", "Uỷ", txt)
|
|
|
|
txt = re.sub(r'"', '”', txt)
|
|
|
|
|
|
txt = re.sub(" +", " ", txt)
|
|
return txt.strip()
|
|
class ViTagger(object):
|
|
def __init__(self, model_path: Union[str or os.PathLike], no_cuda=False):
|
|
self.device = 'cuda' if not no_cuda and torch.cuda.is_available() else 'cpu'
|
|
print("[ViTagger] VnCoreNLP loading ...")
|
|
self.rdrsegmenter = VnCoreNLP("E:/demo_datn/pythonProject1/VnCoreNLP/VnCoreNLP-1.1.1.jar", annotators="wseg", max_heap_size='-Xmx500m')
|
|
print("[ViTagger] Model loading ...")
|
|
self.model, self.tokenizer, self.max_seq_len, self.label2id, self.use_crf = self.load_model(model_path, device=self.device)
|
|
self.id2label = {idx: label for idx, label in enumerate(self.label2id)}
|
|
print("[ViTagger] All ready!")
|
|
|
|
@staticmethod
|
|
def load_model(model_path: Union[str or os.PathLike], device='cpu'):
|
|
if device == 'cpu':
|
|
checkpoint_data = torch.load(model_path, map_location='cpu')
|
|
else:
|
|
checkpoint_data = torch.load(model_path)
|
|
args = checkpoint_data["args"]
|
|
max_seq_len = args.max_seq_length
|
|
use_crf = True if 'crf' in args.model_arch else False
|
|
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=False)
|
|
config = AutoConfig.from_pretrained(args.model_name_or_path, num_labels=len(args.label2id))
|
|
model_clss = MODEL_MAPPING[args.model_name_or_path][args.model_arch]
|
|
model = model_clss(config=config)
|
|
model.load_state_dict(checkpoint_data['model'],strict=False)
|
|
model.to(device)
|
|
model.eval()
|
|
|
|
return model, tokenizer, max_seq_len, args.label2id, use_crf
|
|
|
|
def preprocess(self, in_raw: str):
|
|
norm_text = normalize_text(in_raw)
|
|
sents = []
|
|
sentences = self.rdrsegmenter.tokenize(norm_text)
|
|
for sentence in sentences:
|
|
sents.append(sentence)
|
|
return sents
|
|
|
|
def convert_tensor(self, tokens):
|
|
seq_len = len(tokens)
|
|
encoding = self.tokenizer(tokens,
|
|
padding='max_length',
|
|
truncation=True,
|
|
is_split_into_words=True,
|
|
max_length=self.max_seq_len)
|
|
if 'vinai/phobert' in self.tokenizer.name_or_path:
|
|
print(' '.join(tokens))
|
|
subwords = self.tokenizer.tokenize(' '.join(tokens))
|
|
valid_ids = np.zeros(len(encoding.input_ids), dtype=int)
|
|
label_marks = np.zeros(len(encoding.input_ids), dtype=int)
|
|
i = 1
|
|
for idx, subword in enumerate(subwords[:self.max_seq_len - 2]):
|
|
if idx != 0 and subwords[idx - 1].endswith("@@"):
|
|
continue
|
|
if self.use_crf:
|
|
valid_ids[i - 1] = idx + 1
|
|
else:
|
|
valid_ids[idx + 1] = 1
|
|
i += 1
|
|
else:
|
|
valid_ids = np.zeros(len(encoding.input_ids), dtype=int)
|
|
label_marks = np.zeros(len(encoding.input_ids), dtype=int)
|
|
i = 1
|
|
word_ids = encoding.word_ids()
|
|
for idx in range(1, len(word_ids)):
|
|
if word_ids[idx] is not None and word_ids[idx] != word_ids[idx - 1]:
|
|
if self.use_crf:
|
|
valid_ids[i - 1] = idx
|
|
else:
|
|
valid_ids[idx] = 1
|
|
i += 1
|
|
if self.max_seq_len >= seq_len + 2:
|
|
label_marks[:seq_len] = [1] * seq_len
|
|
else:
|
|
label_marks[:-2] = [1] * (self.max_seq_len - 2)
|
|
if self.use_crf and label_marks[0] == 0:
|
|
raise f"{tokens} have mark == 0 at index 0!"
|
|
item = {key: torch.as_tensor([val]).to(self.device, dtype=torch.long) for key, val in encoding.items()}
|
|
item['valid_ids'] = torch.as_tensor([valid_ids]).to(self.device, dtype=torch.long)
|
|
item['label_masks'] = torch.as_tensor([valid_ids]).to(self.device, dtype=torch.long)
|
|
return item
|
|
|
|
def extract_entity_doc(self, in_raw: str):
|
|
sents = self.preprocess(in_raw)
|
|
print(sents)
|
|
entities_doc = []
|
|
for sent in sents:
|
|
item = self.convert_tensor(sent)
|
|
with torch.no_grad():
|
|
outputs = self.model(**item)
|
|
entity = None
|
|
if isinstance(outputs.tags[0], list):
|
|
tags = list(itertools.chain(*outputs.tags))
|
|
else:
|
|
tags = outputs.tags
|
|
for w, l in list(zip(sent, tags)):
|
|
w = w.replace("_", " ")
|
|
tag = self.id2label[l]
|
|
if not tag == 'O':
|
|
parts = tag.split('-', 1)
|
|
prefix = parts[0]
|
|
tag = parts[1] if len(parts) > 1 else ""
|
|
if entity is None:
|
|
entity = (w, tag)
|
|
else:
|
|
if entity[-1] == tag:
|
|
if prefix == 'I':
|
|
entity = (entity[0] + f' {w}', tag)
|
|
else:
|
|
entities_doc.append(entity)
|
|
entity = (w, tag)
|
|
else:
|
|
entities_doc.append(entity)
|
|
entity = (w, tag)
|
|
elif entity is not None:
|
|
entities_doc.append(entity)
|
|
if w != ' ':
|
|
entities_doc.append((w, 'O'))
|
|
entity = None
|
|
elif w != ' ':
|
|
entities_doc.append((w, 'O'))
|
|
entity = None
|
|
return entities_doc
|
|
|
|
|
|
def __call__(self, in_raw: str):
|
|
sents = self.preprocess(in_raw)
|
|
entites = []
|
|
for sent in sents:
|
|
item = self.convert_tensor(sent)
|
|
with torch.no_grad():
|
|
outputs = self.model(**item)
|
|
entity = None
|
|
if isinstance(outputs.tags[0], list):
|
|
tags = list(itertools.chain(*outputs.tags))
|
|
else:
|
|
tags = outputs.tags
|
|
for w, l in list(zip(sent, tags)):
|
|
w = w.replace("_", " ")
|
|
tag = self.id2label[l]
|
|
if not tag == 'O':
|
|
prefix, tag = tag.split('-')
|
|
if entity is None:
|
|
entity = (w, tag)
|
|
else:
|
|
if entity[-1] == tag:
|
|
if prefix == 'I':
|
|
entity = (entity[0] + f' {w}', tag)
|
|
else:
|
|
entites.append(entity)
|
|
entity = (w, tag)
|
|
else:
|
|
entites.append(entity)
|
|
entity = (w, tag)
|
|
elif entity is not None:
|
|
entites.append(entity)
|
|
entity = None
|
|
else:
|
|
entity = None
|
|
return entites
|
|
|
|
|
|
|
|
|
|
|