File size: 5,164 Bytes
5d73d72 f1854a2 5d73d72 f1854a2 5d73d72 f1854a2 5d73d72 f1854a2 5d73d72 fd07025 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
import streamlit as st
from spacy import displacy
from Model.NER.VLSP2021.Predict_Ner import ViTagger
import re
from thunghiemxuly import save_uploaded_image,convert_text_to_txt,add_string_to_txt
import os
from transformers import AutoTokenizer, BertConfig
from Model.MultimodelNER.VLSP2016.train_umt_2016 import load_model,predict
from Model.MultimodelNER.Ner_processing import format_predictions,process_predictions,combine_entities,remove_B_prefix,combine_i_tags
from Model.MultimodelNER.predict import get_test_examples_predict
from Model.MultimodelNER import resnet as resnet
from Model.MultimodelNER.resnet_utils import myResnet
import torch
import numpy as np
from Model.MultimodelNER.VLSP2016.dataset_roberta import MNERProcessor_2016
CONFIG_NAME = 'bert_config.json'
WEIGHTS_NAME = 'pytorch_model.bin'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net = getattr(resnet, 'resnet152')()
net.load_state_dict(torch.load(os.path.join('Model/Resnet/', 'resnet152.pth')))
encoder = myResnet(net, True, device)
def process_text(text):
# Loại bỏ dấu cách thừa và dấu cách ở đầu và cuối văn bản
processed_text = re.sub(r'\s+', ' ', text.strip())
return processed_text
def show_mner_2016():
multimodal_text = st.text_area("Enter your text for MNER:", height=300)
multimodal_text = process_text(multimodal_text) # Xử lý văn bản
image = st.file_uploader("Upload an image (only jpg):", type=["jpg"])
if st.button("Process Multimodal NER"):
save_image = 'Model/MultimodelNER/VLSP2016/Image'
save_txt = 'Model/MultimodelNER/VLSP2016/Filetxt/test.txt'
image_name = image.name
save_uploaded_image(image, save_image)
convert_text_to_txt(multimodal_text, save_txt)
add_string_to_txt(image_name, save_txt)
st.image(image, caption="Uploaded Image", use_column_width=True)
bert_model='vinai/phobert-base-v2'
output_dir='Model/MultimodelNER/VLSP2016/best_model'
output_model_file = os.path.join(output_dir, WEIGHTS_NAME)
output_encoder_file = os.path.join(output_dir, "pytorch_encoder.bin")
processor = MNERProcessor_2016()
label_list = processor.get_labels()
auxlabel_list = processor.get_auxlabels()
num_labels = len(label_list) + 1
auxnum_labels = len(auxlabel_list) + 1
trans_matrix = np.zeros((auxnum_labels, num_labels), dtype=float)
trans_matrix[0, 0] = 1 # pad to pad
trans_matrix[1, 1] = 1 # O to O
trans_matrix[2, 2] = 0.25 # B to B-MISC
trans_matrix[2, 4] = 0.25 # B to B-PER
trans_matrix[2, 6] = 0.25 # B to B-ORG
trans_matrix[2, 8] = 0.25 # B to B-LOC
trans_matrix[3, 3] = 0.25 # I to I-MISC
trans_matrix[3, 5] = 0.25 # I to I-PER
trans_matrix[3, 7] = 0.25 # I to I-ORG
trans_matrix[3, 9] = 0.25 # I to I-LOC
trans_matrix[4, 10] = 1 # X to X
trans_matrix[5, 11] = 1 # [CLS] to [CLS]
trans_matrix[6, 12] = 1
tokenizer = AutoTokenizer.from_pretrained(bert_model, do_lower_case=False)
model_umt, encoder_umt = load_model(output_model_file, output_encoder_file, encoder,num_labels,auxnum_labels)
eval_examples = get_test_examples_predict('Model/MultimodelNER/VLSP2016/Filetxt/')
y_pred, a = predict(model_umt, encoder_umt, eval_examples, tokenizer, device,save_image,trans_matrix)
formatted_output = format_predictions(a, y_pred[0])
final = process_predictions(formatted_output)
final2 = combine_entities(final)
final3 = remove_B_prefix(final2)
final4 = combine_i_tags(final3)
words_and_labels = final4
# Tạo danh sách từ
words = [word for word, _ in words_and_labels]
# Tạo danh sách thực thể và nhãn cho mỗi từ, loại bỏ nhãn 'O'
entities = [{'start': sum(len(word) + 1 for word, _ in words_and_labels[:i]),
'end': sum(len(word) + 1 for word, _ in words_and_labels[:i + 1]), 'label': label} for
i, (word, label)
in enumerate(words_and_labels) if label != 'O']
# print(entities)
# Render the visualization without color for 'O' labels
html = displacy.render(
{"text": " ".join(words), "ents": entities, "title": None},
style="ent",
manual=True,
options={"colors": {"MISC": "#806699",
"ORG": "#ff6666",
"LOC": "#66cc66",
"PER": "#bf80ff",
"O": None}}
)
# print(html)
st.markdown(html, unsafe_allow_html=True)
###Ví dụ 1 : Một trận hỗn chiến đã xảy ra tại trận đấu khúc côn cầu giữa Penguins và Islanders ở Mỹ (image:penguin) |