linoyts's picture
linoyts HF Staff
Update app.py
34999ab verified
raw
history blame
7.39 kB
import gradio as gr
import spaces
import torch
# from pipeline_ltx_condition import LTXVideoCondition, LTXConditionPipeline
# from diffusers import LTXLatentUpsamplePipeline
from diffusers import LTXConditionPipeline, LTXLatentUpsamplePipeline
from diffusers.pipelines.ltx.pipeline_ltx_condition import LTXVideoCondition
from diffusers.utils import export_to_video, load_video
import numpy as np
pipe = LTXConditionPipeline.from_pretrained("linoyts/LTX-Video-0.9.7-distilled-diffusers", torch_dtype=torch.bfloat16)
pipe_upsample = LTXLatentUpsamplePipeline.from_pretrained("a-r-r-o-w/LTX-Video-0.9.7-Latent-Spatial-Upsampler-diffusers", vae=pipe.vae, torch_dtype=torch.bfloat16)
pipe.to("cuda")
pipe_upsample.to("cuda")
pipe.vae.enable_tiling()
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
def round_to_nearest_resolution_acceptable_by_vae(height, width):
print("before rounding",height, width)
height = height - (height % pipe.vae_spatial_compression_ratio)
width = width - (width % pipe.vae_spatial_compression_ratio)
print("after rounding",height, width)
return height, width
def change_mode_to_text():
return gr.update(value="text-to-video")
def change_mode_to_image():
return gr.update(value="image-to-video")
def change_mode_to_video():
return gr.update(value="video-to-video")
@spaces.GPU
def generate(prompt,
negative_prompt,
image,
video,
height,
width,
mode,
steps,
num_frames,
frames_to_use,
seed,
randomize_seed,
guidance_scale,
improve_texture=False, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Part 1. Generate video at smaller resolution
# Text-only conditioning is also supported without the need to pass `conditions`
expected_height, expected_width = height, width
downscale_factor = 2 / 3
downscaled_height, downscaled_width = int(expected_height * downscale_factor), int(expected_width * downscale_factor)
downscaled_height, downscaled_width = round_to_nearest_resolution_acceptable_by_vae(downscaled_height, downscaled_width)
print(mode)
if mode == "text-to-video" and (video is not None):
video = load_video(video)[:frames_to_use]
condition = True
elif mode == "image-to-video" and (image is not None):
print("WTFFFFFF 1")
video = [image]
condition = True
else:
condition=False
if condition:
print("WTFFFFFF 2")
condition1 = LTXVideoCondition(video=video, frame_index=0)
else:
condition1 = None
latents = pipe(
conditions=condition1,
prompt=prompt,
negative_prompt=negative_prompt,
width=downscaled_width,
height=downscaled_height,
num_frames=num_frames,
num_inference_steps=steps,
decode_timestep = 0.05,
decode_noise_scale = 0.025,
guidance_scale=guidance_scale,
generator=torch.Generator(device="cuda").manual_seed(seed),
output_type="latent",
).frames
# Part 2. Upscale generated video using latent upsampler with fewer inference steps
# The available latent upsampler upscales the height/width by 2x
if improve_texture:
upscaled_height, upscaled_width = downscaled_height * 2, downscaled_width * 2
upscaled_latents = pipe_upsample(
latents=latents,
output_type="latent"
).frames
# Part 3. Denoise the upscaled video with few steps to improve texture (optional, but recommended)
video = pipe(
conditions=condition1,
prompt=prompt,
negative_prompt=negative_prompt,
width=upscaled_width,
height=upscaled_height,
num_frames=num_frames,
guidance_scale=guidance_scale,
denoise_strength=0.6, # Effectively, 0.6 * 3 inference steps
num_inference_steps=3,
latents=upscaled_latents,
decode_timestep=0.05,
image_cond_noise_scale=0.025,
generator=torch.Generator().manual_seed(seed),
output_type="pil",
).frames[0]
else:
upscaled_height, upscaled_width = downscaled_height * 2, downscaled_width * 2
video = pipe_upsample(
latents=latents,
# output_type="latent"
).frames[0]
# Part 4. Downscale the video to the expected resolution
video = [frame.resize((expected_width, expected_height)) for frame in video]
export_to_video(video, "output.mp4", fps=24)
return "output.mp4"
css="""
#col-container {
margin: 0 auto;
max-width: 900px;
}
"""
js_func = """
function refresh() {
const url = new URL(window.location);
if (url.searchParams.get('__theme') !== 'dark') {
url.searchParams.set('__theme', 'dark');
window.location.href = url.href;
}
}
"""
with gr.Blocks(css=css, theme=gr.themes.Ocean()) as demo:
gr.Markdown("# LTX Video 0.9.7 Distilled")
mode = gr.State(value="text-to-video")
with gr.Row():
with gr.Column():
with gr.Group():
with gr.Tab("text-to-video") as text_tab:
image_n = gr.Image(label="", visible=False)
with gr.Tab("image-to-video") as image_tab:
image = gr.Image(label="input image")
with gr.Tab("video-to-video") as video_tab:
video = gr.Video(label="input video")
frames_to_use = gr.Number(label="num frames to use",info="first # of frames to use from the input video", value=1)
prompt = gr.Textbox(label="prompt")
improve_texture = gr.Checkbox(label="improve texture", value=False, info="slows down generation")
run_button = gr.Button()
with gr.Column():
output = gr.Video(interactive=False)
with gr.Accordion("Advanced settings", open=False):
negative_prompt = gr.Textbox(label="negative prompt", value="worst quality, inconsistent motion, blurry, jittery, distorted", visible=False)
with gr.Row():
seed = gr.Number(label="seed", value=0, precision=0)
randomize_seed = gr.Checkbox(label="randomize seed")
with gr.Row():
guidance_scale= gr.Slider(label="guidance scale", minimum=0, maximum=10, value=3, step=1)
steps = gr.Slider(label="Steps", minimum=1, maximum=30, value=8, step=1)
num_frames = gr.Slider(label="# frames", minimum=1, maximum=161, value=96, step=1)
with gr.Row():
height = gr.Slider(label="height", value=512, step=1, maximum=2048)
width = gr.Slider(label="width", value=704, step=1, maximum=2048)
text_tab.select(fn=change_mode_to_text, inputs=[], outputs=[mode])
image_tab.select(fn=change_mode_to_image, inputs=[], outputs=[mode])
video_tab.select(fn=change_mode_to_video, inputs=[], outputs=[mode])
run_button.click(fn=generate,
inputs=[prompt,
negative_prompt,
image,
video,
height,
width,
mode,
steps,
num_frames,
frames_to_use,
seed,
randomize_seed,guidance_scale, improve_texture],
outputs=[output])
demo.launch()