import math import einops import torch from torch import nn import torch.nn.functional as F from torch.nn import LayerNorm from common.utils import HiddenData from model.decoder.interaction import BaseInteraction class SlotGatedInteraction(BaseInteraction): def __init__(self, **config): super().__init__(**config) self.intent_linear = nn.Linear(self.config["input_dim"],1, bias=False) self.slot_linear1 = nn.Linear(self.config["input_dim"],1, bias=False) self.slot_linear2 = nn.Linear(self.config["input_dim"],1, bias=False) self.remove_slot_attn = self.config["remove_slot_attn"] self.slot_gate = SlotGate(**config) def forward(self, encode_hidden: HiddenData, **kwargs): input_hidden = encode_hidden.get_slot_hidden_state() seq_lens = encode_hidden.inputs.attention_mask.sum(-1) output_list = [] for index, slen in enumerate(seq_lens): output_list.append(input_hidden[index, slen - 1, :].unsqueeze(0)) intent_input = torch.cat(output_list, dim=0) e_I = torch.tanh(self.intent_linear(intent_input)).squeeze(1) alpha_I = einops.repeat(e_I, 'b -> b h', h=intent_input.shape[-1]) c_I = alpha_I * intent_input intent_hidden = intent_input+c_I if not self.remove_slot_attn: # slot attention h_k = einops.repeat(self.slot_linear1(input_hidden), 'b l h -> b l c h', c=input_hidden.shape[1]) h_i = einops.repeat(self.slot_linear2(input_hidden), 'b l h -> b l c h', c=input_hidden.shape[1]).transpose(1,2) e_S = torch.tanh(h_k + h_i) alpha_S = torch.softmax(e_S, dim=2).squeeze(3) alpha_S = einops.repeat(alpha_S, 'b l1 l2 -> b l1 l2 h', h=input_hidden.shape[-1]) map_input_hidden = einops.repeat(input_hidden, 'b l h -> b l c h', c=input_hidden.shape[1]) c_S = torch.sum(alpha_S * map_input_hidden, dim=2) else: c_S = input_hidden slot_hidden = input_hidden + c_S * self.slot_gate(c_S,c_I) encode_hidden.update_intent_hidden_state(intent_hidden) encode_hidden.update_slot_hidden_state(slot_hidden) return encode_hidden class SlotGate(nn.Module): def __init__(self, **config): super().__init__() self.linear = nn.Linear(config["input_dim"], config["output_dim"],bias=False) self.v = nn.Parameter(torch.rand(size=[1])) def forward(self, slot_context, intent_context): intent_gate = self.linear(intent_context) intent_gate = einops.repeat(intent_gate, 'b h -> b l h', l=slot_context.shape[1]) return self.v * torch.tanh(slot_context + intent_gate)