import torch import torch.nn.functional as F from torch import nn from common.utils import HiddenData, OutputData, InputData from model.decoder import BaseDecoder from model.decoder.interaction.gl_gin_interaction import LSTMEncoder class IntentEncoder(nn.Module): def __init__(self,input_dim, dropout_rate): super().__init__() self.dropout_rate = dropout_rate self.__intent_lstm = LSTMEncoder( input_dim, input_dim, dropout_rate ) def forward(self, g_hiddens, seq_lens): intent_lstm_out = self.__intent_lstm(g_hiddens, seq_lens) return F.dropout(intent_lstm_out, p=self.dropout_rate, training=self.training) class GLGINDecoder(BaseDecoder): def __init__(self, intent_classifier, slot_classifier, interaction=None, **config): super().__init__(intent_classifier, slot_classifier, interaction) self.config=config self.intent_encoder = IntentEncoder(self.intent_classifier.config["input_dim"], self.config["dropout_rate"]) def forward(self, hidden: HiddenData, forced_slot=None, forced_intent=None, differentiable=None): seq_lens = hidden.inputs.attention_mask.sum(-1) intent_lstm_out = self.intent_encoder(hidden.slot_hidden, seq_lens) hidden.update_intent_hidden_state(intent_lstm_out) pred_intent = self.intent_classifier(hidden) intent_index = self.intent_classifier.decode(OutputData(pred_intent, None),hidden.inputs, return_list=False, return_sentence_level=True) slot_hidden = self.interaction( hidden, pred_intent=pred_intent, intent_index=intent_index, ) pred_slot = self.slot_classifier(slot_hidden) num_intent = self.intent_classifier.config["intent_label_num"] pred_slot = pred_slot.classifier_output[:, num_intent:] return OutputData(pred_intent, F.log_softmax(pred_slot, dim=1))