import functools import importlib import json import os import tarfile from typing import List, Tuple import zipfile from collections import Callable from ruamel import yaml import requests import torch from torch.nn.utils.rnn import pad_sequence from tqdm import tqdm from torch import Tensor import argparse class InputData(): """input datas class """ def __init__(self, inputs: List =None): """init input datas class if inputs is None: this class can be used to save all InputData in the history by 'merge_input_data(X:InputData)' else: this class can be used for model input. Args: inputs (List, optional): inputs with [tokenized_data, slot, intent]. Defaults to None. """ if inputs == None: self.slot = [] self.intent = [] self.input_ids = None self.token_type_ids = None self.attention_mask = None self.seq_lens = None else: self.input_ids = inputs[0].input_ids self.token_type_ids = None if hasattr(inputs[0], "token_type_ids"): self.token_type_ids = inputs[0].token_type_ids self.attention_mask = inputs[0].attention_mask if len(inputs)>=2: self.slot = inputs[1] if len(inputs)>=3: self.intent = inputs[2] self.seq_lens = self.attention_mask.sum(-1) def get_inputs(self): """ get tokenized_data Returns: dict: tokenized data """ res = { "input_ids": self.input_ids, "attention_mask": self.attention_mask } if self.token_type_ids is not None: res["token_type_ids"] = self.token_type_ids return res def merge_input_data(self, inp: "InputData"): """merge another InputData object with slot and intent Args: inp (InputData): another InputData object """ self.slot += inp.slot self.intent += inp.intent def get_slot_mask(self, ignore_index:int)->Tensor: """get slot mask Args: ignore_index (int): ignore index used in slot padding Returns: Tensor: mask tensor """ mask = self.slot != ignore_index mask[:, 0] = torch.ones_like(mask[:, 0]).to(self.slot.device) return mask def get_item(self, index, tokenizer=None, intent_map=None, slot_map=None, ignore_index = -100): res = {"input_ids": self.input_ids[index]} if tokenizer is not None: res["tokens"] = [tokenizer.decode(x) for x in self.input_ids[index]] if intent_map is not None: intents = self.intent.tolist() if isinstance(intents[index], list): res["intent"] = [intent_map[int(x)] for x in intents[index]] else: res["intent"] = intent_map[intents[index]] if slot_map is not None: res["slot"] = [slot_map[x] if x != ignore_index else "#" for x in self.slot.tolist()[index]] return res class OutputData(): """output data class """ def __init__(self, intent_ids=None, slot_ids=None): """init output data class if intent_ids is None and slot_ids is None: this class can be used to save all OutputData in the history by 'merge_output_data(X:OutputData)' else: this class can be used to model output management. Args: intent_ids (Any, optional): list(Tensor) of intent ids / logits / strings. Defaults to None. slot_ids (Any, optional): list(Tensor) of slot ids / ids / strings. Defaults to None. """ if intent_ids is None and slot_ids is None: self.intent_ids = [] self.slot_ids = [] else: if isinstance(intent_ids, ClassifierOutputData): self.intent_ids = intent_ids.classifier_output else: self.intent_ids = intent_ids if isinstance(slot_ids, ClassifierOutputData): self.slot_ids = slot_ids.classifier_output else: self.slot_ids = slot_ids def map_output(self, slot_map=None, intent_map=None): """ map intent or slot ids to intent or slot string. Args: slot_map (dict, optional): slot id-to-string map. Defaults to None. intent_map (dict, optional): intent id-to-string map. Defaults to None. """ if self.slot_ids is not None: if slot_map: self.slot_ids = [[slot_map[x] if x >= 0 else "#" for x in sid] for sid in self.slot_ids] if self.intent_ids is not None: if intent_map: self.intent_ids = [[intent_map[x] for x in sid] if isinstance(sid, list) else intent_map[sid] for sid in self.intent_ids] def merge_output_data(self, output:"OutputData"): """merge another OutData object with slot and intent Args: output (OutputData): another OutputData object """ if output.slot_ids is not None: self.slot_ids += output.slot_ids if output.intent_ids is not None: self.intent_ids += output.intent_ids def save(self, path:str, original_dataset=None): """ save all OutputData in the history Args: path (str): save dir path original_dataset(Iterable): original dataset """ # with open(f"{path}/intent.jsonl", "w") as f: # for x in self.intent_ids: # f.write(json.dumps(x) + "\n") with open(f"{path}/outputs.jsonl", "w") as f: if original_dataset is not None: for i, s, d in zip(self.intent_ids, self.slot_ids, original_dataset): f.write(json.dumps({"pred_intent": i, "pred_slot": s, "text": d["text"], "golden_intent":d["intent"], "golden_slot":d["slot"]}) + "\n") else: for i, s in zip(self.intent_ids, self.slot_ids): f.write(json.dumps({"pred_intent": i, "pred_slot": s}) + "\n") class HiddenData(): """Interactive data structure for all model components """ def __init__(self, intent_hidden, slot_hidden): """init hidden data structure Args: intent_hidden (Any): sentence-level or intent hidden state slot_hidden (Any): token-level or slot hidden state """ self.intent_hidden = intent_hidden self.slot_hidden = slot_hidden self.inputs = None self.embedding = None def get_intent_hidden_state(self): """get intent hidden state Returns: Any: intent hidden state """ return self.intent_hidden def get_slot_hidden_state(self): """get slot hidden state Returns: Any: slot hidden state """ return self.slot_hidden def update_slot_hidden_state(self, hidden_state): """update slot hidden state Args: hidden_state (Any): slot hidden state to update """ self.slot_hidden = hidden_state def update_intent_hidden_state(self, hidden_state): """update intent hidden state Args: hidden_state (Any): intent hidden state to update """ self.intent_hidden = hidden_state def add_input(self, inputs: InputData or "HiddenData"): """add last model component input information to next model component Args: inputs (InputDataor or HiddenData): last model component input """ self.inputs = inputs def add_embedding(self, embedding): self.embedding = embedding class ClassifierOutputData(): """Classifier output data structure of all classifier components """ def __init__(self, classifier_output): self.classifier_output = classifier_output self.output_embedding = None def remove_slot_ignore_index(inputs:InputData, outputs:OutputData, ignore_index=-100): """ remove padding or extra token in input id and output id Args: inputs (InputData): input data with input id outputs (OutputData): output data with decoded output id ignore_index (int, optional): ignore_index in input_ids. Defaults to -100. Returns: InputData: input data removed padding or extra token OutputData: output data removed padding or extra token """ for index, (inp_ss, out_ss) in enumerate(zip(inputs.slot, outputs.slot_ids)): temp_inp = [] temp_out = [] for inp_s, out_s in zip(list(inp_ss), list(out_ss)): if inp_s != ignore_index: temp_inp.append(inp_s) temp_out.append(out_s) inputs.slot[index] = temp_inp outputs.slot_ids[index] = temp_out return inputs, outputs def pack_sequence(inputs:Tensor, seq_len:Tensor or List) -> Tensor: """pack sequence data to packed data without padding. Args: inputs (Tensor): list(Tensor) of packed sequence inputs seq_len (Tensor or List): list(Tensor) of sequence length Returns: Tensor: packed inputs Examples: inputs = [[x, y, z, PAD, PAD], [x, y, PAD, PAD, PAD]] seq_len = [3,2] return -> [x, y, z, x, y] """ output = [] for index, batch in enumerate(inputs): output.append(batch[:seq_len[index]]) return torch.cat(output, dim=0) def unpack_sequence(inputs:Tensor, seq_lens:Tensor or List, padding_value=0) -> Tensor: """unpack sequence data. Args: inputs (Tensor): list(Tensor) of packed sequence inputs seq_lens (Tensor or List): list(Tensor) of sequence length padding_value (int, optional): padding value. Defaults to 0. Returns: Tensor: unpacked inputs Examples: inputs = [x, y, z, x, y] seq_len = [3,2] return -> [[x, y, z, PAD, PAD], [x, y, PAD, PAD, PAD]] """ last_idx = 0 output = [] for _, seq_len in enumerate(seq_lens): output.append(inputs[last_idx:last_idx + seq_len]) last_idx = last_idx + seq_len return pad_sequence(output, batch_first=True, padding_value=padding_value) def get_dict_with_key_prefix(input_dict: dict, prefix=""): res = {} for t in input_dict: res[t + prefix] = input_dict[t] return res def download(url: str, fname: str): """download file from url to fname Args: url (str): remote server url path fname (str): local path to save """ resp = requests.get(url, stream=True) total = int(resp.headers.get('content-length', 0)) with open(fname, 'wb') as file, tqdm( desc=fname, total=total, unit='iB', unit_scale=True, unit_divisor=1024, ) as bar: for data in resp.iter_content(chunk_size=1024): size = file.write(data) bar.update(size) def tar_gz_data(file_name:str): """use "tar.gz" format to compress data Args: file_name (str): file path to tar """ t = tarfile.open(f"{file_name}.tar.gz", "w:gz") for root, dir, files in os.walk(f"{file_name}"): print(root, dir, files) for file in files: fullpath = os.path.join(root, file) t.add(fullpath) t.close() def untar(fname:str, dirs:str): """ uncompress "tar.gz" file Args: fname (str): file path to untar dirs (str): target dir path """ t = tarfile.open(fname) t.extractall(path=dirs) def unzip_file(zip_src:str, dst_dir:str): """ uncompress "zip" file Args: fname (str): file path to unzip dirs (str): target dir path """ r = zipfile.is_zipfile(zip_src) if r: if not os.path.exists(dst_dir): os.mkdir(dst_dir) fz = zipfile.ZipFile(zip_src, 'r') for file in fz.namelist(): fz.extract(file, dst_dir) else: print('This is not zip') def find_callable(target: str) -> Callable: """ find callable function / class to instantiate Args: target (str): class/module path Raises: e: can not import module Returns: Callable: return function / class """ target_module_path, target_callable_path = target.rsplit(".", 1) target_callable_paths = [target_callable_path] target_module = None while len(target_module_path): try: target_module = importlib.import_module(target_module_path) break except Exception as e: raise e target_callable = target_module for attr in reversed(target_callable_paths): target_callable = getattr(target_callable, attr) return target_callable def instantiate(config, target="_model_target_", partial="_model_partial_"): """ instantiate object by config. Modified from https://github.com/HIT-SCIR/ltp/blob/main/python/core/ltp_core/models/utils/instantiate.py. Args: config (Any): configuration target (str, optional): key to assign the class to be instantiated. Defaults to "_model_target_". partial (str, optional): key to judge object whether should be instantiated partially. Defaults to "_model_partial_". Returns: Any: instantiated object """ if isinstance(config, dict) and target in config: target_path = config.get(target) target_callable = find_callable(target_path) is_partial = config.get(partial, False) target_args = { key: instantiate(value) for key, value in config.items() if key not in [target, partial] } if is_partial: return functools.partial(target_callable, **target_args) else: return target_callable(**target_args) elif isinstance(config, dict): return {key: instantiate(value) for key, value in config.items()} else: return config def load_yaml(file): """ load data from yaml files. Args: file (str): yaml file path. Returns: Any: data """ with open(file, encoding="utf-8") as stream: try: return yaml.safe_load(stream) except yaml.YAMLError as exc: raise exc def from_configured(configure_name_or_file:str, model_class:Callable, config_prefix="./config/", **input_config): """load module from pre-configured data Args: configure_name_or_file (str): config path -> {config_prefix}/{configure_name_or_file}.yaml model_class (Callable): module class config_prefix (str, optional): configuration root path. Defaults to "./config/". Returns: Any: instantiated object. """ if os.path.exists(configure_name_or_file): configure_file=configure_name_or_file else: configure_file= os.path.join(config_prefix, configure_name_or_file+".yaml") config = load_yaml(configure_file) config.update(input_config) return model_class(**config) def save_json(file_path, obj): with open(file_path, 'w', encoding="utf8") as fw: fw.write(json.dumps(obj)) def load_json(file_path): with open(file_path, 'r', encoding="utf8") as fw: res =json.load(fw) return res def str2bool(v): if isinstance(v, bool): return v if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.')