Spaces:
Runtime error
Runtime error
File size: 10,375 Bytes
37b9e99 223340a 37b9e99 223340a 37b9e99 223340a 37b9e99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
import json
import os
from collections import Counter
from collections import OrderedDict
from typing import List
import torch
from ordered_set import OrderedSet
from transformers import AutoTokenizer
from common.utils import download, unzip_file
def get_tokenizer(tokenizer_name:str):
"""auto get tokenizer
Args:
tokenizer_name (str): support "word_tokenizer" and other pretrained tokenizer in hugging face.
Returns:
Any: Tokenizer Object
"""
if tokenizer_name == "word_tokenizer":
return WordTokenizer(tokenizer_name)
else:
return AutoTokenizer.from_pretrained(tokenizer_name)
def get_tokenizer_class(tokenizer_name:str):
"""auto get tokenizer class
Args:
tokenizer_name (str): support "word_tokenizer" and other pretrained tokenizer in hugging face.
Returns:
Any: Tokenizer Class
"""
if tokenizer_name == "word_tokenizer":
return WordTokenizer
else:
return AutoTokenizer.from_pretrained
BATCH_STATE = 1
INSTANCE_STATE = 2
class WordTokenizer(object):
def __init__(self, name):
self.__name = name
self.index2instance = OrderedSet()
self.instance2index = OrderedDict()
# Counter Object record the frequency
# of element occurs in raw text.
self.counter = Counter()
self.__sign_pad = "[PAD]"
self.add_instance(self.__sign_pad)
self.__sign_unk = "[UNK]"
self.add_instance(self.__sign_unk)
@property
def padding_side(self):
return "right"
@property
def all_special_ids(self):
return [self.unk_token_id, self.pad_token_id]
@property
def name_or_path(self):
return self.__name
@property
def vocab_size(self):
return len(self.instance2index)
@property
def pad_token_id(self):
return self.instance2index[self.__sign_pad]
@property
def unk_token_id(self):
return self.instance2index[self.__sign_unk]
def add_instance(self, instance):
""" Add instances to alphabet.
1, We support any iterative data structure which
contains elements of str type.
2, We will count added instances that will influence
the serialization of unknown instance.
Args:
instance: is given instance or a list of it.
"""
if isinstance(instance, (list, tuple)):
for element in instance:
self.add_instance(element)
return
# We only support elements of str type.
assert isinstance(instance, str)
# count the frequency of instances.
# self.counter[instance] += 1
if instance not in self.index2instance:
self.instance2index[instance] = len(self.index2instance)
self.index2instance.append(instance)
def __call__(self, instance,
return_tensors="pt",
is_split_into_words=True,
padding=True,
add_special_tokens=False,
truncation=True,
max_length=512,
**config):
if isinstance(instance, (list, tuple)) and isinstance(instance[0], (str)) and is_split_into_words:
res = self.get_index(instance)
state = INSTANCE_STATE
elif isinstance(instance, str) and not is_split_into_words:
res = self.get_index(instance.split(" "))
state = INSTANCE_STATE
elif not is_split_into_words and isinstance(instance, (list, tuple)):
res = [self.get_index(ins.split(" ")) for ins in instance]
state = BATCH_STATE
else:
res = [self.get_index(ins) for ins in instance]
state = BATCH_STATE
res = [r[:max_length] if len(r) >= max_length else r for r in res]
pad_id = self.get_index(self.__sign_pad)
if padding and state == BATCH_STATE:
max_len = max([len(x) for x in instance])
for i in range(len(res)):
res[i] = res[i] + [pad_id] * (max_len - len(res[i]))
if return_tensors == "pt":
input_ids = torch.Tensor(res).long()
attention_mask = (input_ids != pad_id).long()
elif state == BATCH_STATE:
input_ids = res
attention_mask = [1 if r != pad_id else 0 for batch in res for r in batch]
else:
input_ids = res
attention_mask = [1 if r != pad_id else 0 for r in res]
return TokenizedData(input_ids, token_type_ids=attention_mask, attention_mask=attention_mask)
def get_index(self, instance):
""" Serialize given instance and return.
For unknown words, the return index of alphabet
depends on variable self.__use_unk:
1, If True, then return the index of "<UNK>";
2, If False, then return the index of the
element that hold max frequency in training data.
Args:
instance (Any): is given instance or a list of it.
Return:
Any: the serialization of query instance.
"""
if isinstance(instance, (list, tuple)):
return [self.get_index(elem) for elem in instance]
assert isinstance(instance, str)
try:
return self.instance2index[instance]
except KeyError:
return self.instance2index[self.__sign_unk]
def decode(self, index):
""" Get corresponding instance of query index.
if index is invalid, then throws exception.
Args:
index (int): is query index, possibly iterable.
Returns:
is corresponding instance.
"""
if isinstance(index, list):
return [self.decode(elem) for elem in index]
if isinstance(index, torch.Tensor):
index = index.tolist()
return self.decode(index)
return self.index2instance[index]
def decode_batch(self, index, **kargs):
""" Get corresponding instance of query index.
if index is invalid, then throws exception.
Args:
index (int): is query index, possibly iterable.
Returns:
is corresponding instance.
"""
return self.decode(index)
def save(self, path):
""" Save the content of alphabet to files.
There are two kinds of saved files:
1, The first is a list file, elements are
sorted by the frequency of occurrence.
2, The second is a dictionary file, elements
are sorted by it serialized index.
Args:
path (str): is the path to save object.
"""
with open(path, 'w', encoding="utf8") as fw:
fw.write(json.dumps({"name": self.__name, "token_map": self.instance2index}))
@staticmethod
def from_file(path):
with open(path, 'r', encoding="utf8") as fw:
obj = json.load(fw)
tokenizer = WordTokenizer(obj["name"])
tokenizer.instance2index = OrderedDict(obj["token_map"])
# tokenizer.counter = len(tokenizer.instance2index)
tokenizer.index2instance = OrderedSet(tokenizer.instance2index.keys())
return tokenizer
def __len__(self):
return len(self.index2instance)
def __str__(self):
return 'Alphabet {} contains about {} words: \n\t{}'.format(self.name_or_path, len(self), self.index2instance)
def convert_tokens_to_ids(self, tokens):
"""convert token sequence to intput ids sequence
Args:
tokens (Any): token sequence
Returns:
Any: intput ids sequence
"""
try:
if isinstance(tokens, (list, tuple)):
return [self.instance2index[x] for x in tokens]
return self.instance2index[tokens]
except KeyError:
return self.instance2index[self.__sign_unk]
class TokenizedData():
"""tokenized output data with input_ids, token_type_ids, attention_mask
"""
def __init__(self, input_ids, token_type_ids, attention_mask):
self.input_ids = input_ids
self.token_type_ids = token_type_ids
self.attention_mask = attention_mask
def word_ids(self, index: int) -> List[int or None]:
""" get word id list
Args:
index (int): word index in sequence
Returns:
List[int or None]: word id list
"""
return [j if self.attention_mask[index][j] != 0 else None for j, x in enumerate(self.input_ids[index])]
def word_to_tokens(self, index, word_id, **kwargs):
"""map word and tokens
Args:
index (int): unused
word_id (int): word index in sequence
"""
return (word_id, word_id + 1)
def to(self, device):
"""set device
Args:
device (str): support ["cpu", "cuda"]
"""
self.input_ids = self.input_ids.to(device)
self.token_type_ids = self.token_type_ids.to(device)
self.attention_mask = self.attention_mask.to(device)
return self
def load_embedding(tokenizer: WordTokenizer, glove_name:str):
""" load embedding from standford server or local cache.
Args:
tokenizer (WordTokenizer): non-pretrained tokenizer
glove_name (str): _description_
Returns:
Any: word embedding
"""
save_path = "save/" + glove_name + ".zip"
if not os.path.exists(save_path):
download("http://downloads.cs.stanford.edu/nlp/data/glove.6B.zip#" + glove_name, save_path)
unzip_file(save_path, "save/" + glove_name)
dim = int(glove_name.split(".")[-2][:-1])
embedding_list = torch.rand((tokenizer.vocab_size, dim))
embedding_list[tokenizer.pad_token_id] = torch.zeros((1, dim))
with open("save/" + glove_name + "/" + glove_name, "r", encoding="utf8") as f:
for line in f.readlines():
datas = line.split(" ")
word = datas[0]
embedding = torch.Tensor([float(datas[i + 1]) for i in range(len(datas) - 1)])
tokenized = tokenizer.convert_tokens_to_ids(word)
if isinstance(tokenized, int) and tokenized != tokenizer.unk_token_id:
embedding_list[tokenized] = embedding
return embedding_list
|