# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_blocks.py import torch from torch import nn from .attention import Transformer3DModel from .motion_module import get_motion_module from .resnet import Downsample3D, ResnetBlock3D, Upsample3D def get_down_block( down_block_type, num_layers, in_channels, out_channels, temb_channels, add_downsample, resnet_eps, resnet_act_fn, attn_num_head_channels, resnet_groups=None, cross_attention_dim=None, downsample_padding=None, dual_cross_attention=False, use_linear_projection=False, only_cross_attention=False, upcast_attention=False, resnet_time_scale_shift="default", unet_use_cross_frame_attention=False, unet_use_temporal_attention=False, use_inflated_groupnorm=False, use_motion_module=None, motion_module_type=None, motion_module_kwargs=None, ): down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type if down_block_type == "DownBlock3D": return DownBlock3DWarmup( num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, add_downsample=add_downsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, downsample_padding=downsample_padding, resnet_time_scale_shift=resnet_time_scale_shift, use_inflated_groupnorm=use_inflated_groupnorm, use_motion_module=use_motion_module, motion_module_type=motion_module_type, motion_module_kwargs=motion_module_kwargs, ) elif down_block_type == "CrossAttnDownBlock3D": if cross_attention_dim is None: raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock3D") return CrossAttnDownBlock3DWarmup( num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, add_downsample=add_downsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, downsample_padding=downsample_padding, cross_attention_dim=cross_attention_dim, attn_num_head_channels=attn_num_head_channels, dual_cross_attention=dual_cross_attention, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, resnet_time_scale_shift=resnet_time_scale_shift, unet_use_cross_frame_attention=unet_use_cross_frame_attention, unet_use_temporal_attention=unet_use_temporal_attention, use_inflated_groupnorm=use_inflated_groupnorm, use_motion_module=use_motion_module, motion_module_type=motion_module_type, motion_module_kwargs=motion_module_kwargs, ) raise ValueError(f"{down_block_type} does not exist.") def get_up_block( up_block_type, num_layers, in_channels, out_channels, prev_output_channel, temb_channels, add_upsample, resnet_eps, resnet_act_fn, attn_num_head_channels, resnet_groups=None, cross_attention_dim=None, dual_cross_attention=False, use_linear_projection=False, only_cross_attention=False, upcast_attention=False, resnet_time_scale_shift="default", unet_use_cross_frame_attention=False, unet_use_temporal_attention=False, use_inflated_groupnorm=False, use_motion_module=None, motion_module_type=None, motion_module_kwargs=None, ): up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type if up_block_type == "UpBlock3D": return UpBlock3DWarmup( num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, prev_output_channel=prev_output_channel, temb_channels=temb_channels, add_upsample=add_upsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, resnet_time_scale_shift=resnet_time_scale_shift, use_inflated_groupnorm=use_inflated_groupnorm, use_motion_module=use_motion_module, motion_module_type=motion_module_type, motion_module_kwargs=motion_module_kwargs, ) elif up_block_type == "CrossAttnUpBlock3D": if cross_attention_dim is None: raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock3D") return CrossAttnUpBlock3DWarmup( num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, prev_output_channel=prev_output_channel, temb_channels=temb_channels, add_upsample=add_upsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, cross_attention_dim=cross_attention_dim, attn_num_head_channels=attn_num_head_channels, dual_cross_attention=dual_cross_attention, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, resnet_time_scale_shift=resnet_time_scale_shift, unet_use_cross_frame_attention=unet_use_cross_frame_attention, unet_use_temporal_attention=unet_use_temporal_attention, use_inflated_groupnorm=use_inflated_groupnorm, use_motion_module=use_motion_module, motion_module_type=motion_module_type, motion_module_kwargs=motion_module_kwargs, ) raise ValueError(f"{up_block_type} does not exist.") class UNetMidBlock3DCrossAttnWarmup(nn.Module): def __init__( self, in_channels: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, attn_num_head_channels=1, output_scale_factor=1.0, cross_attention_dim=1280, dual_cross_attention=False, use_linear_projection=False, upcast_attention=False, unet_use_cross_frame_attention=False, unet_use_temporal_attention=False, use_inflated_groupnorm=False, use_motion_module=None, motion_module_type=None, motion_module_kwargs=None, ): super().__init__() self.has_cross_attention = True self.attn_num_head_channels = attn_num_head_channels resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) # there is always at least one resnet resnets = [ ResnetBlock3D( in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, use_inflated_groupnorm=use_inflated_groupnorm, ) ] attentions = [] motion_modules = [] for _ in range(num_layers): if dual_cross_attention: raise NotImplementedError attentions.append( Transformer3DModel( attn_num_head_channels, in_channels // attn_num_head_channels, in_channels=in_channels, num_layers=1, cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups, use_linear_projection=use_linear_projection, upcast_attention=upcast_attention, unet_use_cross_frame_attention=unet_use_cross_frame_attention, unet_use_temporal_attention=unet_use_temporal_attention, # enable_cache=True, ) ) motion_modules.append( get_motion_module( in_channels=in_channels, motion_module_type=motion_module_type, motion_module_kwargs=motion_module_kwargs, ) if use_motion_module else None ) resnets.append( ResnetBlock3D( in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, use_inflated_groupnorm=use_inflated_groupnorm, ) ) self.attentions = nn.ModuleList(attentions) self.resnets = nn.ModuleList(resnets) self.motion_modules = nn.ModuleList(motion_modules) def forward( self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None, temporal_attention_mask=None, kv_cache=None, ): hidden_states = self.resnets[0](hidden_states, temb) for attn, resnet, motion_module in zip(self.attentions, self.resnets[1:], self.motion_modules): hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample if motion_module is not None: hidden_states = motion_module( hidden_states, temb, encoder_hidden_states=encoder_hidden_states, temporal_attention_mask=temporal_attention_mask, kv_cache=kv_cache, ) hidden_states = resnet(hidden_states, temb) # return hidden_states, kv_cache return hidden_states class CrossAttnDownBlock3DWarmup(nn.Module): def __init__( self, in_channels: int, out_channels: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, attn_num_head_channels=1, cross_attention_dim=1280, output_scale_factor=1.0, downsample_padding=1, add_downsample=True, dual_cross_attention=False, use_linear_projection=False, only_cross_attention=False, upcast_attention=False, unet_use_cross_frame_attention=False, unet_use_temporal_attention=False, use_inflated_groupnorm=False, use_motion_module=None, motion_module_type=None, motion_module_kwargs=None, ): super().__init__() resnets = [] attentions = [] motion_modules = [] self.has_cross_attention = True self.attn_num_head_channels = attn_num_head_channels for i in range(num_layers): in_channels = in_channels if i == 0 else out_channels resnets.append( ResnetBlock3D( in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, use_inflated_groupnorm=use_inflated_groupnorm, ) ) if dual_cross_attention: raise NotImplementedError attentions.append( Transformer3DModel( attn_num_head_channels, out_channels // attn_num_head_channels, in_channels=out_channels, num_layers=1, cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, unet_use_cross_frame_attention=unet_use_cross_frame_attention, unet_use_temporal_attention=unet_use_temporal_attention, # enable_cache=True, ) ) motion_modules.append( get_motion_module( in_channels=out_channels, motion_module_type=motion_module_type, motion_module_kwargs=motion_module_kwargs, ) if use_motion_module else None ) self.attentions = nn.ModuleList(attentions) self.resnets = nn.ModuleList(resnets) self.motion_modules = nn.ModuleList(motion_modules) if add_downsample: self.downsamplers = nn.ModuleList( [ Downsample3D( out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" ) ] ) else: self.downsamplers = None self.gradient_checkpointing = False def forward( self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None, temporal_attention_mask=None, kv_cache=None, ): output_states = () for resnet, attn, motion_module in zip(self.resnets, self.attentions, self.motion_modules): if self.training and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(attn, return_dict=False), hidden_states, encoder_hidden_states, )[0] if motion_module is not None: hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(motion_module), hidden_states.requires_grad_(), temb, encoder_hidden_states, ) else: hidden_states = resnet(hidden_states, temb) hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample # add motion module if motion_module is not None: hidden_states = motion_module( hidden_states, temb, encoder_hidden_states=encoder_hidden_states, temporal_attention_mask=temporal_attention_mask, kv_cache=kv_cache, ) output_states += (hidden_states,) if self.downsamplers is not None: for downsampler in self.downsamplers: hidden_states = downsampler(hidden_states) output_states += (hidden_states,) # return hidden_states, output_states, kv_cache return hidden_states, output_states class DownBlock3DWarmup(nn.Module): def __init__( self, in_channels: int, out_channels: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, output_scale_factor=1.0, add_downsample=True, downsample_padding=1, use_inflated_groupnorm=False, use_motion_module=None, motion_module_type=None, motion_module_kwargs=None, ): super().__init__() resnets = [] motion_modules = [] for i in range(num_layers): in_channels = in_channels if i == 0 else out_channels resnets.append( ResnetBlock3D( in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, use_inflated_groupnorm=use_inflated_groupnorm, ) ) motion_modules.append( get_motion_module( in_channels=out_channels, motion_module_type=motion_module_type, motion_module_kwargs=motion_module_kwargs, ) if use_motion_module else None ) self.resnets = nn.ModuleList(resnets) self.motion_modules = nn.ModuleList(motion_modules) if add_downsample: self.downsamplers = nn.ModuleList( [ Downsample3D( out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" ) ] ) else: self.downsamplers = None self.gradient_checkpointing = False def forward( self, hidden_states, temb=None, encoder_hidden_states=None, temporal_attention_mask=None, kv_cache=None, ): output_states = () for resnet, motion_module in zip(self.resnets, self.motion_modules): if self.training and self.gradient_checkpointing: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) if motion_module is not None: hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(motion_module), hidden_states.requires_grad_(), temb, encoder_hidden_states, ) else: hidden_states = resnet(hidden_states, temb) # add motion module if motion_module is not None: hidden_states = motion_module( hidden_states, temb, encoder_hidden_states=encoder_hidden_states, temporal_attention_mask=temporal_attention_mask, kv_cache=kv_cache, ) output_states += (hidden_states,) if self.downsamplers is not None: for downsampler in self.downsamplers: hidden_states = downsampler(hidden_states) output_states += (hidden_states,) # return hidden_states, output_states, kv_cache return hidden_states, output_states class CrossAttnUpBlock3DWarmup(nn.Module): def __init__( self, in_channels: int, out_channels: int, prev_output_channel: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, attn_num_head_channels=1, cross_attention_dim=1280, output_scale_factor=1.0, add_upsample=True, dual_cross_attention=False, use_linear_projection=False, only_cross_attention=False, upcast_attention=False, unet_use_cross_frame_attention=False, unet_use_temporal_attention=False, use_inflated_groupnorm=False, use_motion_module=None, motion_module_type=None, motion_module_kwargs=None, ): super().__init__() resnets = [] attentions = [] motion_modules = [] self.has_cross_attention = True self.attn_num_head_channels = attn_num_head_channels for i in range(num_layers): res_skip_channels = in_channels if (i == num_layers - 1) else out_channels resnet_in_channels = prev_output_channel if i == 0 else out_channels resnets.append( ResnetBlock3D( in_channels=resnet_in_channels + res_skip_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, use_inflated_groupnorm=use_inflated_groupnorm, ) ) if dual_cross_attention: raise NotImplementedError attentions.append( Transformer3DModel( attn_num_head_channels, out_channels // attn_num_head_channels, in_channels=out_channels, num_layers=1, cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, unet_use_cross_frame_attention=unet_use_cross_frame_attention, unet_use_temporal_attention=unet_use_temporal_attention, # enable_cache=True, ) ) motion_modules.append( get_motion_module( in_channels=out_channels, motion_module_type=motion_module_type, motion_module_kwargs=motion_module_kwargs, ) if use_motion_module else None ) self.attentions = nn.ModuleList(attentions) self.resnets = nn.ModuleList(resnets) self.motion_modules = nn.ModuleList(motion_modules) if add_upsample: self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)]) else: self.upsamplers = None self.gradient_checkpointing = False def forward( self, hidden_states, res_hidden_states_tuple, temb=None, encoder_hidden_states=None, upsample_size=None, attention_mask=None, temporal_attention_mask=None, kv_cache=None, ): for resnet, attn, motion_module in zip(self.resnets, self.attentions, self.motion_modules): # pop res hidden states res_hidden_states = res_hidden_states_tuple[-1] res_hidden_states_tuple = res_hidden_states_tuple[:-1] hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) if self.training and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(attn, return_dict=False), hidden_states, encoder_hidden_states, )[0] if motion_module is not None: hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(motion_module), hidden_states.requires_grad_(), temb, encoder_hidden_states, ) else: hidden_states = resnet(hidden_states, temb) hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample # add motion module if motion_module is not None: hidden_states = motion_module( hidden_states, temb, encoder_hidden_states=encoder_hidden_states, temporal_attention_mask=temporal_attention_mask, kv_cache=kv_cache, ) if self.upsamplers is not None: for upsampler in self.upsamplers: hidden_states = upsampler(hidden_states, upsample_size) # return hidden_states, kv_cache return hidden_states class UpBlock3DWarmup(nn.Module): def __init__( self, in_channels: int, prev_output_channel: int, out_channels: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, output_scale_factor=1.0, add_upsample=True, use_inflated_groupnorm=False, use_motion_module=None, motion_module_type=None, motion_module_kwargs=None, ): super().__init__() resnets = [] motion_modules = [] for i in range(num_layers): res_skip_channels = in_channels if (i == num_layers - 1) else out_channels resnet_in_channels = prev_output_channel if i == 0 else out_channels resnets.append( ResnetBlock3D( in_channels=resnet_in_channels + res_skip_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, use_inflated_groupnorm=use_inflated_groupnorm, ) ) motion_modules.append( get_motion_module( in_channels=out_channels, motion_module_type=motion_module_type, motion_module_kwargs=motion_module_kwargs, ) if use_motion_module else None ) self.resnets = nn.ModuleList(resnets) self.motion_modules = nn.ModuleList(motion_modules) if add_upsample: self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)]) else: self.upsamplers = None self.gradient_checkpointing = False def forward( self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, encoder_hidden_states=None, temporal_attention_mask=None, kv_cache=None, ): for resnet, motion_module in zip(self.resnets, self.motion_modules): # pop res hidden states res_hidden_states = res_hidden_states_tuple[-1] res_hidden_states_tuple = res_hidden_states_tuple[:-1] hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) if self.training and self.gradient_checkpointing: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) if motion_module is not None: hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(motion_module), hidden_states.requires_grad_(), temb, encoder_hidden_states, ) else: hidden_states = resnet(hidden_states, temb) if motion_module is not None: hidden_states = motion_module( hidden_states, temb, encoder_hidden_states=encoder_hidden_states, temporal_attention_mask=temporal_attention_mask, kv_cache=kv_cache, ) if self.upsamplers is not None: for upsampler in self.upsamplers: hidden_states = upsampler(hidden_states, upsample_size) # return hidden_states, kv_cache return hidden_states