# Adapted from https://github.com/guoyww/AnimateDiff from dataclasses import dataclass import torch import torch.nn.functional as F from diffusers.models.attention import FeedForward from diffusers.utils import BaseOutput from diffusers.utils.import_utils import is_xformers_available from einops import rearrange from torch import nn from .attention import CrossAttention from .positional_encoding import PositionalEncoding from .resnet import zero_module from .stream_motion_module import StreamTemporalAttention def attn_mask_to_bias(attn_mask: torch.Tensor): """ Convert bool attention mask to float attention bias tensor. """ if attn_mask.dtype in [torch.float, torch.half]: return attn_mask elif attn_mask.dtype == torch.bool: attn_bias = torch.zeros_like(attn_mask).float().masked_fill(attn_mask.logical_not(), float("-inf")) return attn_bias else: raise TypeError("Only support float or bool tensor for attn_mask input. " f"But receive {type(attn_mask)}.") @dataclass class TemporalTransformer3DModelOutput(BaseOutput): sample: torch.FloatTensor if is_xformers_available(): import xformers import xformers.ops else: xformers = None def get_motion_module( in_channels, motion_module_type: str, motion_module_kwargs: dict, ): if motion_module_type == "Vanilla": return VanillaTemporalModule( in_channels=in_channels, **motion_module_kwargs, ) elif motion_module_type == "Streaming": return VanillaTemporalModule( in_channels=in_channels, enable_streaming=True, **motion_module_kwargs, ) else: raise ValueError class VanillaTemporalModule(nn.Module): def __init__( self, in_channels, num_attention_heads=8, num_transformer_block=2, attention_block_types=("Temporal_Self", "Temporal_Self"), cross_frame_attention_mode=None, temporal_position_encoding=False, temporal_position_encoding_max_len=32, temporal_attention_dim_div=1, # parameters for 3d conv num_3d_conv_layers=0, kernel_size=3, down_up_sample=False, zero_initialize=True, attention_class_name="versatile", attention_kwargs={}, enable_streaming=False, *args, **kwargs, ): super().__init__() self.temporal_transformer = TemporalTransformer3DModel( in_channels=in_channels, num_attention_heads=num_attention_heads, attention_head_dim=in_channels // num_attention_heads // temporal_attention_dim_div, num_layers=num_transformer_block, attention_block_types=attention_block_types, cross_frame_attention_mode=cross_frame_attention_mode, temporal_position_encoding=temporal_position_encoding, temporal_position_encoding_max_len=temporal_position_encoding_max_len, attention_class_name=attention_class_name, attention_kwargs=attention_kwargs, enable_streaming=enable_streaming, ) if zero_initialize: self.temporal_transformer.proj_out = zero_module(self.temporal_transformer.proj_out) self.enable_streaming = enable_streaming def forward(self, *args, **kwargs): fwd_fn = self.forward_streaming if self.enable_streaming else self.forward_orig return fwd_fn(*args, **kwargs) def forward_orig( self, input_tensor, temb, encoder_hidden_states, attention_mask=None, temporal_attention_mask=None, kv_cache=None, ): hidden_states = input_tensor hidden_states = self.temporal_transformer( hidden_states, encoder_hidden_states, attention_mask, temporal_attention_mask, kv_cache=kv_cache ) output = hidden_states return output def forward_streaming( self, input_tensor, temb, encoder_hidden_states, attention_mask=None, temporal_attention_mask=None, kv_cache=None, pe_idx=None, update_idx=None, ): hidden_states = input_tensor hidden_states = self.temporal_transformer( hidden_states, encoder_hidden_states, attention_mask, temporal_attention_mask, kv_cache=kv_cache, pe_idx=pe_idx, update_idx=update_idx, ) output = hidden_states return output class TemporalTransformer3DModel(nn.Module): def __init__( self, in_channels, num_attention_heads, attention_head_dim, num_layers, attention_block_types=( "Temporal_Self", "Temporal_Self", ), dropout=0.0, norm_num_groups=32, cross_attention_dim=1280, activation_fn="geglu", attention_bias=False, upcast_attention=False, cross_frame_attention_mode=None, temporal_position_encoding=False, temporal_position_encoding_max_len=32, attention_class_name="versatile", attention_kwargs={}, enable_streaming=False, ): super().__init__() inner_dim = num_attention_heads * attention_head_dim self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) self.proj_in = nn.Linear(in_channels, inner_dim) self.transformer_blocks = nn.ModuleList( [ TemporalTransformerBlock( dim=inner_dim, num_attention_heads=num_attention_heads, attention_head_dim=attention_head_dim, attention_block_types=attention_block_types, dropout=dropout, norm_num_groups=norm_num_groups, cross_attention_dim=cross_attention_dim, activation_fn=activation_fn, attention_bias=attention_bias, upcast_attention=upcast_attention, cross_frame_attention_mode=cross_frame_attention_mode, temporal_position_encoding=temporal_position_encoding, temporal_position_encoding_max_len=temporal_position_encoding_max_len, attention_class_name=attention_class_name, attention_extra_args=attention_kwargs, enable_streaming=enable_streaming, ) for d in range(num_layers) ] ) self.proj_out = nn.Linear(inner_dim, in_channels) self.enable_streaming = enable_streaming def forward(self, *args, **kwargs): fwd_fn = self.forward_streaming if self.enable_streaming else self.forward_orig return fwd_fn(*args, **kwargs) def forward_orig( self, hidden_states, encoder_hidden_states=None, attention_mask=None, temporal_attention_mask=None, kv_cache=None, ): assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}." video_length = hidden_states.shape[2] hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") batch, channel, height, width = hidden_states.shape residual = hidden_states hidden_states = self.norm(hidden_states) inner_dim = hidden_states.shape[1] hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim) hidden_states = self.proj_in(hidden_states) # Transformer Blocks for block in self.transformer_blocks: hidden_states = block( hidden_states, encoder_hidden_states=encoder_hidden_states, video_length=video_length, height=height, width=width, temporal_attention_mask=temporal_attention_mask, kv_cache=kv_cache, ) # output hidden_states = self.proj_out(hidden_states) hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous() output = hidden_states + residual output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length) return output def forward_streaming( self, hidden_states, encoder_hidden_states=None, attention_mask=None, temporal_attention_mask=None, kv_cache=None, pe_idx=None, update_idx=None, ): assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}." video_length = hidden_states.shape[2] hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") batch, channel, height, width = hidden_states.shape residual = hidden_states hidden_states = self.norm(hidden_states) inner_dim = hidden_states.shape[1] hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim) hidden_states = self.proj_in(hidden_states) # Transformer Blocks for block in self.transformer_blocks: hidden_states = block( hidden_states, encoder_hidden_states=encoder_hidden_states, video_length=video_length, height=height, width=width, temporal_attention_mask=temporal_attention_mask, kv_cache=kv_cache, pe_idx=pe_idx, update_idx=update_idx, ) # output hidden_states = self.proj_out(hidden_states) hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous() output = hidden_states + residual output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length) return output class TemporalTransformerBlock(nn.Module): def __init__( self, dim, num_attention_heads, attention_head_dim, attention_block_types=( "Temporal_Self", "Temporal_Self", ), dropout=0.0, norm_num_groups=32, cross_attention_dim=768, activation_fn="geglu", attention_bias=False, upcast_attention=False, cross_frame_attention_mode=None, temporal_position_encoding=False, temporal_position_encoding_max_len=32, attention_class_name: str = "versatile", attention_extra_args={}, enable_streaming=False, ): super().__init__() attention_blocks = [] norms = [] if attention_class_name == "versatile": attention_cls = VersatileAttention elif attention_class_name == "stream": attention_cls = StreamTemporalAttention assert enable_streaming, "StreamTemporalAttention can only used under streaming mode" else: raise ValueError(f"Do not support attention_cls: {attention_class_name}.") for block_name in attention_block_types: attention_blocks.append( attention_cls( attention_mode=block_name.split("_")[0], cross_attention_dim=cross_attention_dim if block_name.endswith("_Cross") else None, query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, upcast_attention=upcast_attention, cross_frame_attention_mode=cross_frame_attention_mode, temporal_position_encoding=temporal_position_encoding, temporal_position_encoding_max_len=temporal_position_encoding_max_len, **attention_extra_args, ) ) norms.append(nn.LayerNorm(dim)) self.attention_blocks = nn.ModuleList(attention_blocks) self.norms = nn.ModuleList(norms) self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn) self.ff_norm = nn.LayerNorm(dim) self.enable_streaming = enable_streaming def forward(self, *args, **kwargs): fwd_func = self.forward_streaming if self.enable_streaming else self.forward_orig return fwd_func(*args, **kwargs) def forward_orig( self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None, height=None, width=None, temporal_attention_mask=None, kv_cache=None, ): for attention_block, norm in zip(self.attention_blocks, self.norms): norm_hidden_states = norm(hidden_states) kv_cache_ = kv_cache[attention_block.motion_module_idx] hidden_states = ( attention_block( norm_hidden_states, encoder_hidden_states=encoder_hidden_states if attention_block.is_cross_attention else None, video_length=video_length, height=height, width=width, temporal_attention_mask=temporal_attention_mask, kv_cache=kv_cache_, ) + hidden_states ) hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states output = hidden_states return output def forward_streaming( self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None, height=None, width=None, temporal_attention_mask=None, kv_cache=None, pe_idx=None, update_idx=None, ): for attention_block, norm in zip(self.attention_blocks, self.norms): norm_hidden_states = norm(hidden_states) kv_cache_ = kv_cache[attention_block.motion_module_idx] hidden_states = ( attention_block( norm_hidden_states, encoder_hidden_states=encoder_hidden_states if attention_block.is_cross_attention else None, video_length=video_length, height=height, width=width, temporal_attention_mask=temporal_attention_mask, kv_cache=kv_cache_, pe_idx=pe_idx, update_idx=update_idx, ) + hidden_states ) hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states output = hidden_states return output class VersatileAttention(CrossAttention): def __init__( self, attention_mode=None, cross_frame_attention_mode=None, temporal_position_encoding=False, temporal_position_encoding_max_len=32, stream_cache_mode=None, *args, **kwargs, ): super().__init__(*args, **kwargs) self.stream_cache_mode = stream_cache_mode self.timestep = None assert attention_mode in ["Temporal"] self.attention_mode = self._orig_attention_mode = attention_mode self.is_cross_attention = kwargs.get("cross_attention_dim", None) is not None self.pos_encoder = PositionalEncoding( kwargs["query_dim"], dropout=0.0, max_len=temporal_position_encoding_max_len ) def extra_repr(self): return f"(Module Info) Attention_Mode: {self.attention_mode}, Is_Cross_Attention: {self.is_cross_attention}" def set_index(self, idx): self.motion_module_idx = idx def forward( self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None, kv_cache=None, *args, **kwargs, ): batch_size_frame, sequence_length, _ = hidden_states.shape d = hidden_states.shape[1] hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length) if self.group_norm is not None: hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states query = self.to_q(hidden_states) key = self.to_k(encoder_hidden_states) value = self.to_v(encoder_hidden_states) kv_cache[0, :, :video_length, :] = key.clone() kv_cache[1, :, :video_length, :] = value.clone() pe = self.pos_encoder.pe[:, :video_length] pe_q = self.to_q(pe) pe_k = self.to_k(pe) pe_v = self.to_v(pe) query = query + pe_q key = key + pe_k value = value + pe_v query = self.reshape_heads_to_batch_dim(query) key = self.reshape_heads_to_batch_dim(key) value = self.reshape_heads_to_batch_dim(value) if attention_mask is not None: attention_bias = attn_mask_to_bias(attention_mask) if attention_bias.shape[-1] != query.shape[1]: target_length = query.shape[1] attention_bias = F.pad(attention_mask, (0, target_length), value=float("-inf")) attention_bias = attention_bias.repeat_interleave(self.heads, dim=0) attention_bias = attention_bias.to(query) else: attention_bias = None hidden_states = self._memory_efficient_attention_pt20(query, key, value, attention_bias) hidden_states = hidden_states.to(query.dtype) # linear proj hidden_states = self.to_out[0](hidden_states) # dropout hidden_states = self.to_out[1](hidden_states) hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d) return hidden_states