# Adapted from https://github.com/guoyww/AnimateDiff from dataclasses import dataclass from typing import Optional import torch import torch.nn.functional as F from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.models import ModelMixin from diffusers.models.attention import AdaLayerNorm, Attention, FeedForward from diffusers.utils import BaseOutput from diffusers.utils.import_utils import is_xformers_available from einops import rearrange, repeat from torch import nn @dataclass class Transformer3DModelOutput(BaseOutput): sample: torch.FloatTensor if is_xformers_available(): import xformers import xformers.ops else: xformers = None class Transformer3DModel(ModelMixin, ConfigMixin): @register_to_config def __init__( self, num_attention_heads: int = 16, attention_head_dim: int = 88, in_channels: Optional[int] = None, num_layers: int = 1, dropout: float = 0.0, norm_num_groups: int = 32, cross_attention_dim: Optional[int] = None, attention_bias: bool = False, activation_fn: str = "geglu", num_embeds_ada_norm: Optional[int] = None, use_linear_projection: bool = False, only_cross_attention: bool = False, upcast_attention: bool = False, unet_use_cross_frame_attention=None, unet_use_temporal_attention=None, ): super().__init__() self.use_linear_projection = use_linear_projection self.num_attention_heads = num_attention_heads self.attention_head_dim = attention_head_dim inner_dim = num_attention_heads * attention_head_dim # Define input layers self.in_channels = in_channels self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) if use_linear_projection: self.proj_in = nn.Linear(in_channels, inner_dim) else: self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) # Define transformers blocks self.transformer_blocks = nn.ModuleList( [ BasicTransformerBlock( inner_dim, num_attention_heads, attention_head_dim, dropout=dropout, cross_attention_dim=cross_attention_dim, activation_fn=activation_fn, num_embeds_ada_norm=num_embeds_ada_norm, attention_bias=attention_bias, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, unet_use_cross_frame_attention=unet_use_cross_frame_attention, unet_use_temporal_attention=unet_use_temporal_attention, ) for d in range(num_layers) ] ) # 4. Define output layers if use_linear_projection: self.proj_out = nn.Linear(in_channels, inner_dim) else: self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True): # Input assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}." video_length = hidden_states.shape[2] hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") if encoder_hidden_states is not None: encoder_hidden_states = repeat(encoder_hidden_states, "b n c -> (b f) n c", f=video_length) batch, channel, height, weight = hidden_states.shape residual = hidden_states hidden_states = self.norm(hidden_states) if not self.use_linear_projection: hidden_states = self.proj_in(hidden_states) inner_dim = hidden_states.shape[1] hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) else: inner_dim = hidden_states.shape[1] hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) hidden_states = self.proj_in(hidden_states) # Blocks for block in self.transformer_blocks: hidden_states = block( hidden_states, encoder_hidden_states=encoder_hidden_states, timestep=timestep, video_length=video_length, ) # Output if not self.use_linear_projection: hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() hidden_states = self.proj_out(hidden_states) else: hidden_states = self.proj_out(hidden_states) hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() output = hidden_states + residual output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length) if not return_dict: return (output,) return Transformer3DModelOutput(sample=output) class BasicTransformerBlock(nn.Module): def __init__( self, dim: int, num_attention_heads: int, attention_head_dim: int, dropout=0.0, cross_attention_dim: Optional[int] = None, activation_fn: str = "geglu", num_embeds_ada_norm: Optional[int] = None, attention_bias: bool = False, only_cross_attention: bool = False, upcast_attention: bool = False, unet_use_cross_frame_attention=None, unet_use_temporal_attention=None, ): super().__init__() self.only_cross_attention = only_cross_attention self.use_ada_layer_norm = num_embeds_ada_norm is not None self.unet_use_cross_frame_attention = unet_use_cross_frame_attention self.unet_use_temporal_attention = unet_use_temporal_attention # SC-Attn assert unet_use_cross_frame_attention is not None if unet_use_cross_frame_attention: self.attn1 = SparseCausalAttention( query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, cross_attention_dim=cross_attention_dim if only_cross_attention else None, upcast_attention=upcast_attention, ) else: self.attn1 = Attention( query_dim=dim, cross_attention_dim=cross_attention_dim if only_cross_attention else None, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, upcast_attention=upcast_attention, ) self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) # Cross-Attn if cross_attention_dim is not None: self.attn2 = Attention( query_dim=dim, cross_attention_dim=cross_attention_dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, upcast_attention=upcast_attention, ) else: self.attn2 = None if cross_attention_dim is not None: self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) else: self.norm2 = None # Feed-forward self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn) self.norm3 = nn.LayerNorm(dim) # Temp-Attn assert unet_use_temporal_attention is not None if unet_use_temporal_attention: self.attn_temp = Attention( query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, upcast_attention=upcast_attention, ) nn.init.zeros_(self.attn_temp.to_out[0].weight.data) self.norm_temp = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) def forward( self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, video_length=None ): # SparseCausal-Attention norm_hidden_states = ( self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states) ) # if self.only_cross_attention: # hidden_states = ( # self.attn1(norm_hidden_states, encoder_hidden_states, attention_mask=attention_mask) + hidden_states # ) # else: # hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states # pdb.set_trace() if self.unet_use_cross_frame_attention: hidden_states = ( self.attn1(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states ) else: hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask) + hidden_states if self.attn2 is not None: # Cross-Attention norm_hidden_states = ( self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) ) hidden_states = ( self.attn2( norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask ) + hidden_states ) # Feed-forward hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states # Temporal-Attention if self.unet_use_temporal_attention: d = hidden_states.shape[1] hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length) norm_hidden_states = ( self.norm_temp(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_temp(hidden_states) ) hidden_states = self.attn_temp(norm_hidden_states) + hidden_states hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d) return hidden_states class CrossAttention(nn.Module): r""" A cross attention layer. Parameters: query_dim (`int`): The number of channels in the query. cross_attention_dim (`int`, *optional*): The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`. heads (`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention. dim_head (`int`, *optional*, defaults to 64): The number of channels in each head. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. bias (`bool`, *optional*, defaults to False): Set to `True` for the query, key, and value linear layers to contain a bias parameter. """ def __init__( self, query_dim: int, cross_attention_dim: Optional[int] = None, heads: int = 8, dim_head: int = 64, dropout: float = 0.0, bias=False, upcast_attention: bool = False, upcast_softmax: bool = False, added_kv_proj_dim: Optional[int] = None, norm_num_groups: Optional[int] = None, *args, **kwargs, ): super().__init__() inner_dim = dim_head * heads cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim self.upcast_attention = upcast_attention self.upcast_softmax = upcast_softmax self.scale = dim_head**-0.5 self.heads = heads # for slice_size > 0 the attention score computation # is split across the batch axis to save memory # You can set slice_size with `set_attention_slice` self.sliceable_head_dim = heads self._slice_size = None self._use_memory_efficient_attention_xformers = False self.added_kv_proj_dim = added_kv_proj_dim if norm_num_groups is not None: self.group_norm = nn.GroupNorm(num_channels=inner_dim, num_groups=norm_num_groups, eps=1e-5, affine=True) else: self.group_norm = None self.to_q = nn.Linear(query_dim, inner_dim, bias=bias) self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=bias) self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=bias) if self.added_kv_proj_dim is not None: self.add_k_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim) self.add_v_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim) self.to_out = nn.ModuleList([]) self.to_out.append(nn.Linear(inner_dim, query_dim)) self.to_out.append(nn.Dropout(dropout)) self.kv_channels = cross_attention_dim def set_info(self, h: int, w: int, *args, **kwargs): """ Useful function to pre-assign buffer for cacheable temporal-attn """ self.h = h self.w = w def reshape_heads_to_batch_dim(self, tensor): batch_size, seq_len, dim = tensor.shape head_size = self.heads tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size) return tensor def reshape_batch_dim_to_heads(self, tensor): batch_size, seq_len, dim = tensor.shape head_size = self.heads tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) return tensor def set_attention_slice(self, slice_size): if slice_size is not None and slice_size > self.sliceable_head_dim: raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.") self._slice_size = slice_size @torch.no_grad() def vis_attn_mask( self, query: Optional[torch.Tensor] = None, key: Optional[torch.Tensor] = None, attn_map: Optional[torch.Tensor] = None, attn_bias: Optional[torch.Tensor] = None, ): # dtype = torch.float dtype = torch.half if attn_map is None: attn_map = torch.baddbmm( torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=dtype, device=query.device), query.to(dtype), key.transpose(-1, -2).to(dtype), beta=0, alpha=self.scale, ) if attn_bias is not None: attn_map = attn_map + attn_bias.to(dtype) attn_map = attn_map.softmax(dim=-1) hw_head = self.h * self.w * self.heads assert ( attn_map.shape[0] % hw_head == 0 ), "height-width-heads must be divisible by the first dimension of attn map. " # NOTE: here we strict batch size is 1, assert attn_map.shape[0] // hw_head in [1, 2], "input batch size must be 1 or 2 (for cfg)." if (attn_map.shape[0] // hw_head) == 2: # NOTE: only visualize cond one attn_map = attn_map[hw_head:] attn_map = attn_map.mean(0).cpu().numpy() # AttnMapVisualizer.visualize_attn_map(attn_map, 'f16-at-one-time-sink.png') # exit() return attn_map def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None): batch_size, sequence_length, _ = hidden_states.shape encoder_hidden_states = encoder_hidden_states if self.group_norm is not None: hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = self.to_q(hidden_states) dim = query.shape[-1] query = self.reshape_heads_to_batch_dim(query) if self.added_kv_proj_dim is not None: key = self.to_k(hidden_states) value = self.to_v(hidden_states) encoder_hidden_states_key_proj = self.add_k_proj(encoder_hidden_states) encoder_hidden_states_value_proj = self.add_v_proj(encoder_hidden_states) key = self.reshape_heads_to_batch_dim(key) value = self.reshape_heads_to_batch_dim(value) encoder_hidden_states_key_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_key_proj) encoder_hidden_states_value_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_value_proj) key = torch.concat([encoder_hidden_states_key_proj, key], dim=1) value = torch.concat([encoder_hidden_states_value_proj, value], dim=1) else: encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states key = self.to_k(encoder_hidden_states) value = self.to_v(encoder_hidden_states) key = self.reshape_heads_to_batch_dim(key) value = self.reshape_heads_to_batch_dim(value) if attention_mask is not None: if attention_mask.shape[-1] != query.shape[1]: target_length = query.shape[1] attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) attention_mask = attention_mask.repeat_interleave(self.heads, dim=0) # attention, what we cannot get enough of if self._use_memory_efficient_attention_xformers: hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask) # Some versions of xformers return output in fp32, cast it back to the dtype of the input hidden_states = hidden_states.to(query.dtype) else: if self._slice_size is None or query.shape[0] // self._slice_size == 1: hidden_states = self._attention(query, key, value, attention_mask) else: hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask) # linear proj hidden_states = self.to_out[0](hidden_states) # dropout hidden_states = self.to_out[1](hidden_states) return hidden_states def _attention(self, query, key, value, attention_mask=None): if self.upcast_attention: query = query.float() key = key.float() attention_scores = torch.baddbmm( torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device), query, key.transpose(-1, -2), beta=0, alpha=self.scale, ) if attention_mask is not None: attention_scores = attention_scores + attention_mask if self.upcast_softmax: attention_scores = attention_scores.float() attention_probs = attention_scores.softmax(dim=-1) # cast back to the original dtype attention_probs = attention_probs.to(value.dtype) # compute attention output hidden_states = torch.bmm(attention_probs, value) # reshape hidden_states hidden_states = self.reshape_batch_dim_to_heads(hidden_states) return hidden_states def _sliced_attention(self, query, key, value, sequence_length, dim, attention_mask): batch_size_attention = query.shape[0] hidden_states = torch.zeros( (batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype ) slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0] for i in range(hidden_states.shape[0] // slice_size): start_idx = i * slice_size end_idx = (i + 1) * slice_size query_slice = query[start_idx:end_idx] key_slice = key[start_idx:end_idx] if self.upcast_attention: query_slice = query_slice.float() key_slice = key_slice.float() attn_slice = torch.baddbmm( torch.empty(slice_size, query.shape[1], key.shape[1], dtype=query_slice.dtype, device=query.device), query_slice, key_slice.transpose(-1, -2), beta=0, alpha=self.scale, ) if attention_mask is not None: attn_slice = attn_slice + attention_mask[start_idx:end_idx] if self.upcast_softmax: attn_slice = attn_slice.float() attn_slice = attn_slice.softmax(dim=-1) # cast back to the original dtype attn_slice = attn_slice.to(value.dtype) attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx]) hidden_states[start_idx:end_idx] = attn_slice # reshape hidden_states hidden_states = self.reshape_batch_dim_to_heads(hidden_states) return hidden_states def set_use_memory_efficient_attention_xformers(self, *args, **kwargs): print("Set Xformers for MotionModule's Attention.") self._use_memory_efficient_attention_xformers = True def _memory_efficient_attention_xformers(self, query, key, value, attention_mask): # TODO attention_mask query = query.contiguous() key = key.contiguous() value = value.contiguous() hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask) hidden_states = self.reshape_batch_dim_to_heads(hidden_states) return hidden_states def _memory_efficient_attention_pt20(self, query, key, value, attention_mask): query = query.contiguous() key = key.contiguous() value = value.contiguous() hidden_states = torch.nn.functional.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0, is_causal=False ) hidden_states = self.reshape_batch_dim_to_heads(hidden_states) return hidden_states class SparseCausalAttention(CrossAttention): def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None): batch_size, sequence_length, _ = hidden_states.shape encoder_hidden_states = encoder_hidden_states if self.group_norm is not None: hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = self.to_q(hidden_states) dim = query.shape[-1] query = self.reshape_heads_to_batch_dim(query) if self.added_kv_proj_dim is not None: raise NotImplementedError encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states key = self.to_k(encoder_hidden_states) value = self.to_v(encoder_hidden_states) former_frame_index = torch.arange(video_length) - 1 former_frame_index[0] = 0 key = rearrange(key, "(b f) d c -> b f d c", f=video_length) # key = torch.cat([key[:, [0] * video_length], key[:, [0] * video_length]], dim=2) key = key[:, [0] * video_length] key = rearrange(key, "b f d c -> (b f) d c") value = rearrange(value, "(b f) d c -> b f d c", f=video_length) # value = torch.cat([value[:, [0] * video_length], value[:, [0] * video_length]], dim=2) # value = value[:, former_frame_index] value = rearrange(value, "b f d c -> (b f) d c") key = self.reshape_heads_to_batch_dim(key) value = self.reshape_heads_to_batch_dim(value) if attention_mask is not None: if attention_mask.shape[-1] != query.shape[1]: target_length = query.shape[1] attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) attention_mask = attention_mask.repeat_interleave(self.heads, dim=0) # attention, what we cannot get enough of if self._use_memory_efficient_attention_xformers: hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask) # Some versions of xformers return output in fp32, cast it back to the dtype of the input hidden_states = hidden_states.to(query.dtype) else: if self._slice_size is None or query.shape[0] // self._slice_size == 1: hidden_states = self._attention(query, key, value, attention_mask) else: hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask) # linear proj hidden_states = self.to_out[0](hidden_states) # dropout hidden_states = self.to_out[1](hidden_states) return hidden_states class AttnMapVisualizer: def __init__(self): pass def set_visualizer(self, unet: nn.Module): pass def add_attn_map(self): pass @staticmethod def visualize_attn_map(attn_map: torch.Tensor, save_path: str): import numpy as np from matplotlib import pyplot as plt plt.imshow(attn_map) ax = plt.gca() ax.set_xticks(np.arange(-0.5, attn_map.shape[0] - 1, 1)) ax.set_yticks(np.arange(-0.5, attn_map.shape[1] - 1, 1)) ax.set_xticklabels(np.arange(0, attn_map.shape[0], 1)) ax.set_yticklabels(np.arange(0, attn_map.shape[1], 1)) ax.grid(color="r", linestyle="-", linewidth=1) plt.colorbar() plt.savefig(save_path) print(f"Saved to {save_path}")