"""Utils for monoDepth. """ import sys import re import numpy as np import cv2 import torch def read_pfm(path): """Read pfm file. Args: path (str): path to file Returns: tuple: (data, scale) """ with open(path, "rb") as file: color = None width = None height = None scale = None endian = None header = file.readline().rstrip() if header.decode("ascii") == "PF": color = True elif header.decode("ascii") == "Pf": color = False else: raise Exception("Not a PFM file: " + path) dim_match = re.match(r"^(\d+)\s(\d+)\s$", file.readline().decode("ascii")) if dim_match: width, height = list(map(int, dim_match.groups())) else: raise Exception("Malformed PFM header.") scale = float(file.readline().decode("ascii").rstrip()) if scale < 0: # little-endian endian = "<" scale = -scale else: # big-endian endian = ">" data = np.fromfile(file, endian + "f") shape = (height, width, 3) if color else (height, width) data = np.reshape(data, shape) data = np.flipud(data) return data, scale def write_pfm(path, image, scale=1): """Write pfm file. Args: path (str): pathto file image (array): data scale (int, optional): Scale. Defaults to 1. """ with open(path, "wb") as file: color = None if image.dtype.name != "float32": raise Exception("Image dtype must be float32.") image = np.flipud(image) if len(image.shape) == 3 and image.shape[2] == 3: # color image color = True elif ( len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1 ): # greyscale color = False else: raise Exception("Image must have H x W x 3, H x W x 1 or H x W dimensions.") file.write("PF\n" if color else "Pf\n".encode()) file.write("%d %d\n".encode() % (image.shape[1], image.shape[0])) endian = image.dtype.byteorder if endian == "<" or endian == "=" and sys.byteorder == "little": scale = -scale file.write("%f\n".encode() % scale) image.tofile(file) def read_image(path): """Read image and output RGB image (0-1). Args: path (str): path to file Returns: array: RGB image (0-1) """ img = cv2.imread(path) if img.ndim == 2: img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) / 255.0 return img def resize_image(img): """Resize image and make it fit for network. Args: img (array): image Returns: tensor: data ready for network """ height_orig = img.shape[0] width_orig = img.shape[1] if width_orig > height_orig: scale = width_orig / 384 else: scale = height_orig / 384 height = (np.ceil(height_orig / scale / 32) * 32).astype(int) width = (np.ceil(width_orig / scale / 32) * 32).astype(int) img_resized = cv2.resize(img, (width, height), interpolation=cv2.INTER_AREA) img_resized = ( torch.from_numpy(np.transpose(img_resized, (2, 0, 1))).contiguous().float() ) img_resized = img_resized.unsqueeze(0) return img_resized def resize_depth(depth, width, height): """Resize depth map and bring to CPU (numpy). Args: depth (tensor): depth width (int): image width height (int): image height Returns: array: processed depth """ depth = torch.squeeze(depth[0, :, :, :]).to("cpu") depth_resized = cv2.resize( depth.numpy(), (width, height), interpolation=cv2.INTER_CUBIC ) return depth_resized def write_depth(path, depth, bits=1): """Write depth map to pfm and png file. Args: path (str): filepath without extension depth (array): depth """ write_pfm(path + ".pfm", depth.astype(np.float32)) depth_min = depth.min() depth_max = depth.max() max_val = (2**(8*bits))-1 if depth_max - depth_min > np.finfo("float").eps: out = max_val * (depth - depth_min) / (depth_max - depth_min) else: out = np.zeros(depth.shape, dtype=depth.type) if bits == 1: cv2.imwrite(path + ".png", out.astype("uint8")) elif bits == 2: cv2.imwrite(path + ".png", out.astype("uint16")) return