## Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer ### TensorFlow inference using `.pb` and `.onnx` models 1. [Run inference on TensorFlow-model by using TensorFlow](#run-inference-on-tensorflow-model-by-using-tensorFlow) 2. [Run inference on ONNX-model by using TensorFlow](#run-inference-on-onnx-model-by-using-tensorflow) 3. [Make ONNX model from downloaded Pytorch model file](#make-onnx-model-from-downloaded-pytorch-model-file) ### Run inference on TensorFlow-model by using TensorFlow 1) Download the model weights [model-f6b98070.pb](https://github.com/intel-isl/MiDaS/releases/download/v2_1/model-f6b98070.pb) and [model-small.pb](https://github.com/intel-isl/MiDaS/releases/download/v2_1/model-small.pb) and place the file in the `/tf/` folder. 2) Set up dependencies: ```shell # install OpenCV pip install --upgrade pip pip install opencv-python # install TensorFlow pip install -I grpcio tensorflow==2.3.0 tensorflow-addons==0.11.2 numpy==1.18.0 ``` #### Usage 1) Place one or more input images in the folder `tf/input`. 2) Run the model: ```shell python tf/run_pb.py ``` Or run the small model: ```shell python tf/run_pb.py --model_weights model-small.pb --model_type small ``` 3) The resulting inverse depth maps are written to the `tf/output` folder. ### Run inference on ONNX-model by using ONNX-Runtime 1) Download the model weights [model-f6b98070.onnx](https://github.com/intel-isl/MiDaS/releases/download/v2_1/model-f6b98070.onnx) and [model-small.onnx](https://github.com/intel-isl/MiDaS/releases/download/v2_1/model-small.onnx) and place the file in the `/tf/` folder. 2) Set up dependencies: ```shell # install OpenCV pip install --upgrade pip pip install opencv-python # install ONNX pip install onnx==1.7.0 # install ONNX Runtime pip install onnxruntime==1.5.2 ``` #### Usage 1) Place one or more input images in the folder `tf/input`. 2) Run the model: ```shell python tf/run_onnx.py ``` Or run the small model: ```shell python tf/run_onnx.py --model_weights model-small.onnx --model_type small ``` 3) The resulting inverse depth maps are written to the `tf/output` folder. ### Make ONNX model from downloaded Pytorch model file 1) Download the model weights [model-f6b98070.pt](https://github.com/intel-isl/MiDaS/releases/download/v2_1/model-f6b98070.pt) and place the file in the root folder. 2) Set up dependencies: ```shell # install OpenCV pip install --upgrade pip pip install opencv-python # install PyTorch TorchVision pip install -I torch==1.7.0 torchvision==0.8.0 # install TensorFlow pip install -I grpcio tensorflow==2.3.0 tensorflow-addons==0.11.2 numpy==1.18.0 # install ONNX pip install onnx==1.7.0 # install ONNX-TensorFlow git clone https://github.com/onnx/onnx-tensorflow.git cd onnx-tensorflow git checkout 095b51b88e35c4001d70f15f80f31014b592b81e pip install -e . ``` #### Usage 1) Run the converter: ```shell python tf/make_onnx_model.py ``` 2) The resulting `model-f6b98070.onnx` file is written to the `/tf/` folder. ### Requirements The code was tested with Python 3.6.9, PyTorch 1.5.1, TensorFlow 2.2.0, TensorFlow-addons 0.8.3, ONNX 1.7.0, ONNX-TensorFlow (GitHub-master-17.07.2020) and OpenCV 4.3.0. ### Citation Please cite our paper if you use this code or any of the models: ``` @article{Ranftl2019, author = {Ren\'{e} Ranftl and Katrin Lasinger and David Hafner and Konrad Schindler and Vladlen Koltun}, title = {Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer}, journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)}, year = {2020}, } ``` ### License MIT License