Spaces:
Sleeping
Sleeping
# Adapted from https://github.com/open-mmlab/PIA/blob/main/animatediff/pipelines/i2v_pipeline.py | |
from dataclasses import dataclass | |
from typing import List, Optional, Union | |
import numpy as np | |
import torch | |
from diffusers.configuration_utils import FrozenDict | |
from diffusers.loaders import TextualInversionLoaderMixin | |
from diffusers.models import AutoencoderKL | |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
from diffusers.schedulers import ( | |
DDIMScheduler, | |
DPMSolverMultistepScheduler, | |
EulerAncestralDiscreteScheduler, | |
EulerDiscreteScheduler, | |
LMSDiscreteScheduler, | |
PNDMScheduler, | |
) | |
from diffusers.utils import BaseOutput, deprecate, is_accelerate_available, logging | |
from packaging import version | |
from transformers import CLIPTextModel, CLIPTokenizer | |
from ..models.depth_utils import MidasDetector | |
from ..models.unet_depth_streaming import UNet3DConditionStreamingModel | |
from .loader import LoraLoaderWithWarmup | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class AnimationPipelineOutput(BaseOutput): | |
videos: Union[torch.Tensor, np.ndarray] | |
input_images: Optional[Union[torch.Tensor, np.ndarray]] = None | |
class AnimationDepthPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderWithWarmup): | |
_optional_components = [] | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
tokenizer: CLIPTokenizer, | |
unet: UNet3DConditionStreamingModel, | |
depth_model: MidasDetector, | |
scheduler: Union[ | |
DDIMScheduler, | |
PNDMScheduler, | |
LMSDiscreteScheduler, | |
EulerDiscreteScheduler, | |
EulerAncestralDiscreteScheduler, | |
DPMSolverMultistepScheduler, | |
], | |
): | |
super().__init__() | |
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: | |
deprecation_message = ( | |
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" | |
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " | |
"to update the config accordingly as leaving `steps_offset` might led to incorrect results" | |
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," | |
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" | |
" file" | |
) | |
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) | |
new_config = dict(scheduler.config) | |
new_config["steps_offset"] = 1 | |
scheduler._internal_dict = FrozenDict(new_config) | |
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True: | |
deprecation_message = ( | |
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`." | |
" `clip_sample` should be set to False in the configuration file. Please make sure to update the" | |
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in" | |
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very" | |
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file" | |
) | |
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False) | |
new_config = dict(scheduler.config) | |
new_config["clip_sample"] = False | |
scheduler._internal_dict = FrozenDict(new_config) | |
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse( | |
version.parse(unet.config._diffusers_version).base_version | |
) < version.parse("0.9.0.dev0") | |
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 | |
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: | |
deprecation_message = ( | |
"The configuration file of the unet has set the default `sample_size` to smaller than" | |
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the" | |
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" | |
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" | |
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" | |
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" | |
" in the config might lead to incorrect results in future versions. If you have downloaded this" | |
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" | |
" the `unet/config.json` file" | |
) | |
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) | |
new_config = dict(unet.config) | |
new_config["sample_size"] = 64 | |
unet._internal_dict = FrozenDict(new_config) | |
self.register_modules( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
depth_model=depth_model, | |
scheduler=scheduler, | |
) | |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
self.log_denoising_mean = False | |
def enable_vae_slicing(self): | |
self.vae.enable_slicing() | |
def disable_vae_slicing(self): | |
self.vae.disable_slicing() | |
def enable_sequential_cpu_offload(self, gpu_id=0): | |
if is_accelerate_available(): | |
from accelerate import cpu_offload | |
else: | |
raise ImportError("Please install accelerate via `pip install accelerate`") | |
device = torch.device(f"cuda:{gpu_id}") | |
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]: | |
if cpu_offloaded_model is not None: | |
cpu_offload(cpu_offloaded_model, device) | |
def _execution_device(self): | |
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"): | |
return self.device | |
for module in self.unet.modules(): | |
if ( | |
hasattr(module, "_hf_hook") | |
and hasattr(module._hf_hook, "execution_device") | |
and module._hf_hook.execution_device is not None | |
): | |
return torch.device(module._hf_hook.execution_device) | |
return self.device | |
def _encode_prompt( | |
self, prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt, clip_skip=None | |
): | |
batch_size = len(prompt) if isinstance(prompt, list) else 1 | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): | |
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = text_inputs.attention_mask.to(device) | |
else: | |
attention_mask = None | |
if clip_skip is None: | |
text_embeddings = self.text_encoder( | |
text_input_ids.to(device), | |
attention_mask=attention_mask, | |
) | |
text_embeddings = text_embeddings[0] | |
else: | |
# support ckip skip here, suitable for model based on NAI~ | |
text_embeddings = self.text_encoder( | |
text_input_ids.to(device), | |
attention_mask=attention_mask, | |
output_hidden_states=True, | |
) | |
text_embeddings = text_embeddings[-1][-(clip_skip + 1)] | |
text_embeddings = self.text_encoder.text_model.final_layer_norm(text_embeddings) | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
bs_embed, seq_len, _ = text_embeddings.shape | |
text_embeddings = text_embeddings.repeat(1, num_videos_per_prompt, 1) | |
text_embeddings = text_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1) | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance: | |
uncond_tokens: List[str] | |
if negative_prompt is None: | |
uncond_tokens = [""] * batch_size | |
elif type(prompt) is not type(negative_prompt): | |
raise TypeError( | |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
f" {type(prompt)}." | |
) | |
elif isinstance(negative_prompt, str): | |
uncond_tokens = [negative_prompt] | |
elif batch_size != len(negative_prompt): | |
raise ValueError( | |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
" the batch size of `prompt`." | |
) | |
else: | |
uncond_tokens = negative_prompt | |
max_length = text_input_ids.shape[-1] | |
uncond_input = self.tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = uncond_input.attention_mask.to(device) | |
else: | |
attention_mask = None | |
uncond_embeddings = self.text_encoder( | |
uncond_input.input_ids.to(device), | |
attention_mask=attention_mask, | |
) | |
uncond_embeddings = uncond_embeddings[0] | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = uncond_embeddings.shape[1] | |
uncond_embeddings = uncond_embeddings.repeat(1, num_videos_per_prompt, 1) | |
uncond_embeddings = uncond_embeddings.view(batch_size * num_videos_per_prompt, seq_len, -1) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | |
return text_embeddings | |
def build_pipeline(cls, config_path: str, dreambooth: Optional[str] = None): | |
"""We build pipeline from config path""" | |
from omegaconf import OmegaConf | |
from ...utils.config import load_config | |
from ..converter import load_third_party_checkpoints | |
from ..models.unet_depth_streaming import UNet3DConditionStreamingModel | |
cfg = load_config(config_path) | |
pretrained_model_path = cfg.pretrained_model_path | |
unet_additional_kwargs = cfg.get("unet_additional_kwargs", {}) | |
noise_scheduler_kwargs = cfg.noise_scheduler_kwargs | |
third_party_dict = cfg.get("third_party_dict", {}) | |
noise_scheduler = DDIMScheduler(**OmegaConf.to_container(noise_scheduler_kwargs)) | |
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae") | |
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer") | |
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder") | |
unet = UNet3DConditionStreamingModel.from_pretrained_2d( | |
pretrained_model_path, | |
subfolder="unet", | |
unet_additional_kwargs=OmegaConf.to_container(unet_additional_kwargs) if unet_additional_kwargs else {}, | |
) | |
motion_module_path = cfg.motion_module_path | |
# load motion module to unet | |
mm_checkpoint = torch.load(motion_module_path, map_location="cpu") | |
if "global_step" in mm_checkpoint: | |
print(f"global_step: {mm_checkpoint['global_step']}") | |
state_dict = mm_checkpoint["state_dict"] if "state_dict" in mm_checkpoint else mm_checkpoint | |
# NOTE: hard code here: remove `grid` from state_dict | |
state_dict = {k.replace("module.", ""): v for k, v in state_dict.items() if "grid" not in k} | |
m, u = unet.load_state_dict(state_dict, strict=False) | |
assert len(u) == 0, f"Find unexpected keys ({len(u)}): {u}" | |
print(f"missing keys: {len(m)}, unexpected keys: {len(u)}") | |
unet = unet.to(device="cuda", dtype=torch.float16) | |
vae = vae.to(device="cuda", dtype=torch.bfloat16) | |
text_encoder = text_encoder.to(device="cuda", dtype=torch.float16) | |
depth_model = MidasDetector(cfg.depth_model_path).to(device="cuda", dtype=torch.float16) | |
pipeline = cls( | |
unet=unet, | |
vae=vae, | |
tokenizer=tokenizer, | |
text_encoder=text_encoder, | |
depth_model=depth_model, | |
scheduler=noise_scheduler, | |
) | |
pipeline = load_third_party_checkpoints(pipeline, third_party_dict, dreambooth) | |
return pipeline | |
def build_warmup_unet(cls, config_path: str, dreambooth: Optional[str] = None): | |
from omegaconf import OmegaConf | |
from ...utils.config import load_config | |
from ..converter import load_third_party_unet | |
from ..models.unet_depth_warmup import UNet3DConditionWarmupModel | |
cfg = load_config(config_path) | |
pretrained_model_path = cfg.pretrained_model_path | |
unet_additional_kwargs = cfg.get("unet_additional_kwargs", {}) | |
third_party_dict = cfg.get("third_party_dict", {}) | |
unet = UNet3DConditionWarmupModel.from_pretrained_2d( | |
pretrained_model_path, | |
subfolder="unet", | |
unet_additional_kwargs=OmegaConf.to_container(unet_additional_kwargs) if unet_additional_kwargs else {}, | |
) | |
motion_module_path = cfg.motion_module_path | |
# load motion module to unet | |
mm_checkpoint = torch.load(motion_module_path, map_location="cpu") | |
if "global_step" in mm_checkpoint: | |
print(f"global_step: {mm_checkpoint['global_step']}") | |
state_dict = mm_checkpoint["state_dict"] if "state_dict" in mm_checkpoint else mm_checkpoint | |
# NOTE: hard code here: remove `grid` from state_dict | |
state_dict = {k.replace("module.", ""): v for k, v in state_dict.items() if "grid" not in k} | |
m, u = unet.load_state_dict(state_dict, strict=False) | |
assert len(u) == 0, f"Find unexpected keys ({len(u)}): {u}" | |
print(f"missing keys: {len(m)}, unexpected keys: {len(u)}") | |
unet = load_third_party_unet(unet, third_party_dict, dreambooth) | |
return unet | |
def prepare_cache(self, height: int, width: int, denoising_steps_num: int): | |
vae = self.vae | |
scale_factor = 2 ** (len(vae.config.block_out_channels) - 1) | |
self.unet.set_info_for_attn(height // scale_factor, width // scale_factor) | |
kv_cache_list = self.unet.prepare_cache(denoising_steps_num) | |
return kv_cache_list | |
def prepare_warmup_unet(self, height: int, width: int, unet): | |
vae = self.vae | |
scale_factor = 2 ** (len(vae.config.block_out_channels) - 1) | |
unet.set_info_for_attn(height // scale_factor, width // scale_factor) | |