File size: 25,123 Bytes
d16b52d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
import gc
import os
import traceback
from pathlib import Path
from typing import Dict, List, Literal, Optional, Union

import numpy as np
import torch
from diffusers import AutoencoderTiny
from PIL import Image

from live2diff import StreamAnimateDiffusionDepth
from live2diff.image_utils import postprocess_image
from live2diff.pipeline_stream_animation_depth import WARMUP_FRAMES


class StreamAnimateDiffusionDepthWrapper:
    def __init__(
        self,
        config_path: str,
        few_step_model_type: str,
        num_inference_steps: int,
        t_index_list: Optional[List[int]] = None,
        strength: Optional[float] = None,
        dreambooth_path: Optional[str] = None,
        lora_dict: Optional[Dict[str, float]] = None,
        output_type: Literal["pil", "pt", "np", "latent"] = "pil",
        vae_id: Optional[str] = None,
        device: Literal["cpu", "cuda"] = "cuda",
        dtype: torch.dtype = torch.float16,
        frame_buffer_size: int = 1,
        width: int = 512,
        height: int = 512,
        acceleration: Literal["none", "xformers", "tensorrt"] = "tensorrt",
        do_add_noise: bool = True,
        device_ids: Optional[List[int]] = None,
        use_tiny_vae: bool = True,
        enable_similar_image_filter: bool = False,
        similar_image_filter_threshold: float = 0.98,
        similar_image_filter_max_skip_frame: int = 10,
        use_denoising_batch: bool = True,
        cfg_type: Literal["none", "full", "self", "initialize"] = "self",
        seed: int = 42,
        engine_dir: Optional[Union[str, Path]] = "engines",
        opt_unet: bool = False,
    ):
        """
        Initializes the StreamAnimateDiffusionWrapper.

        Parameters
        ----------
        config_path : str
            The model id or path to load.
        few_step_model_type : str
            The few step model type to use.
        num_inference_steps : int
            The number of inference steps to perform. If `t_index_list`
            is passed, `num_infernce_steps` will parsed as the number
            of denoising steps before apply few-step lora. Otherwise,
            `num_inference_steps` will be parsed as the number of
            steps after applying few-step lora.
        t_index_list : List[int]
            The t_index_list to use for inference.
        strength : Optional[float]
            The strength to use for inference.
        dreambooth_path : Optional[str]
            The dreambooth path to use for inference. If not passed,
            will use dreambooth from config.
        lora_dict : Optional[Dict[str, float]], optional
            The lora_dict to load, by default None.
            Keys are the LoRA names and values are the LoRA scales.
            Example: {'LoRA_1' : 0.5 , 'LoRA_2' : 0.7 ,...}
        output_type : Literal["pil", "pt", "np", "latent"], optional
            The output type of image, by default "pil".
        vae_id : Optional[str], optional
            The vae_id to load, by default None.
            If None, the default TinyVAE
            ("madebyollin/taesd") will be used.
        device : Literal["cpu", "cuda"], optional
            The device to use for inference, by default "cuda".
        dtype : torch.dtype, optional
            The dtype for inference, by default torch.float16.
        frame_buffer_size : int, optional
            The frame buffer size for denoising batch, by default 1.
        width : int, optional
            The width of the image, by default 512.
        height : int, optional
            The height of the image, by default 512.
        acceleration : Literal["none", "xformers", "tensorrt"], optional
            The acceleration method, by default "tensorrt".
        do_add_noise : bool, optional
            Whether to add noise for following denoising steps or not,
            by default True.
        device_ids : Optional[List[int]], optional
            The device ids to use for DataParallel, by default None.
        use_lcm_lora : bool, optional
            Whether to use LCM-LoRA or not, by default True.
        use_tiny_vae : bool, optional
            Whether to use TinyVAE or not, by default True.
        enable_similar_image_filter : bool, optional
            Whether to enable similar image filter or not,
            by default False.
        similar_image_filter_threshold : float, optional
            The threshold for similar image filter, by default 0.98.
        similar_image_filter_max_skip_frame : int, optional
            The max skip frame for similar image filter, by default 10.
        use_denoising_batch : bool, optional
            Whether to use denoising batch or not, by default True.
        cfg_type : Literal["none", "full", "self", "initialize"],
        optional
            The cfg_type for img2img mode, by default "self".
            You cannot use anything other than "none" for txt2img mode.
        seed : int, optional
            The seed, by default 42.
        engine_dir : Optional[Union[str, Path]], optional
            The directory to save TensorRT engines, by default "engines".
        opt_unet : bool, optional
            Whether to optimize UNet or not, by default False.
        """
        self.sd_turbo = False

        self.device = device
        self.dtype = dtype
        self.width = width
        self.height = height
        self.output_type = output_type
        self.frame_buffer_size = frame_buffer_size

        self.use_denoising_batch = use_denoising_batch

        self.stream: StreamAnimateDiffusionDepth = self._load_model(
            config_path=config_path,
            lora_dict=lora_dict,
            dreambooth_path=dreambooth_path,
            few_step_model_type=few_step_model_type,
            vae_id=vae_id,
            num_inference_steps=num_inference_steps,
            t_index_list=t_index_list,
            strength=strength,
            height=height,
            width=width,
            acceleration=acceleration,
            do_add_noise=do_add_noise,
            use_tiny_vae=use_tiny_vae,
            cfg_type=cfg_type,
            seed=seed,
            engine_dir=engine_dir,
            opt_unet=opt_unet,
        )
        self.batch_size = len(self.stream.t_list) * frame_buffer_size if use_denoising_batch else frame_buffer_size

        if device_ids is not None:
            self.stream.unet = torch.nn.DataParallel(self.stream.unet, device_ids=device_ids)

        if enable_similar_image_filter:
            self.stream.enable_similar_image_filter(
                similar_image_filter_threshold, similar_image_filter_max_skip_frame
            )

    def prepare(
        self,
        warmup_frames: torch.Tensor,
        prompt: str,
        negative_prompt: str = "",
        guidance_scale: float = 1.2,
        delta: float = 1.0,
    ) -> torch.Tensor:
        """
        Prepares the model for inference.

        Parameters
        ----------
        prompt : str
            The prompt to generate images from.
        num_inference_steps : int, optional
            The number of inference steps to perform, by default 50.
        guidance_scale : float, optional
            The guidance scale to use, by default 1.2.
        delta : float, optional
            The delta multiplier of virtual residual noise,
            by default 1.0.

        Returns
        ----------
        warmup_frames : torch.Tensor
            generated warmup-frames.

        """
        warmup_frames = self.stream.prepare(
            warmup_frames=warmup_frames,
            prompt=prompt,
            negative_prompt=negative_prompt,
            guidance_scale=guidance_scale,
            delta=delta,
        )

        warmup_frames = warmup_frames.permute(0, 2, 3, 1)
        warmup_frames = (warmup_frames.clip(-1, 1) + 1) / 2
        return warmup_frames

    def __call__(
        self,
        image: Optional[Union[str, Image.Image, torch.Tensor]] = None,
        prompt: Optional[str] = None,
    ) -> Union[Image.Image, List[Image.Image]]:
        """
        Performs img2img or txt2img based on the mode.

        Parameters
        ----------
        image : Optional[Union[str, Image.Image, torch.Tensor]]
            The image to generate from.
        prompt : Optional[str]
            The prompt to generate images from.

        Returns
        -------
        Union[Image.Image, List[Image.Image]]
            The generated image.
        """
        return self.img2img(image, prompt)

    def img2img(
        self, image: Union[str, Image.Image, torch.Tensor], prompt: Optional[str] = None
    ) -> Union[Image.Image, List[Image.Image], torch.Tensor, np.ndarray]:
        """
        Performs img2img.

        Parameters
        ----------
        image : Union[str, Image.Image, torch.Tensor]
            The image to generate from.

        Returns
        -------
        Image.Image
            The generated image.
        """
        if prompt is not None:
            self.stream.update_prompt(prompt)

        if isinstance(image, str) or isinstance(image, Image.Image):
            image = self.preprocess_image(image)

        image_tensor = self.stream(image)
        image = self.postprocess_image(image_tensor, output_type=self.output_type)

        return image

    def preprocess_image(self, image: Union[str, Image.Image]) -> torch.Tensor:
        """
        Preprocesses the image.

        Parameters
        ----------
        image : Union[str, Image.Image, torch.Tensor]
            The image to preprocess.

        Returns
        -------
        torch.Tensor
            The preprocessed image.
        """
        if isinstance(image, str):
            image = Image.open(image).convert("RGB").resize((self.width, self.height))
        if isinstance(image, Image.Image):
            image = image.convert("RGB").resize((self.width, self.height))

        return self.stream.image_processor.preprocess(image, self.height, self.width).to(
            device=self.device, dtype=self.dtype
        )

    def postprocess_image(
        self, image_tensor: torch.Tensor, output_type: str = "pil"
    ) -> Union[Image.Image, List[Image.Image], torch.Tensor, np.ndarray]:
        """
        Postprocesses the image.

        Parameters
        ----------
        image_tensor : torch.Tensor
            The image tensor to postprocess.

        Returns
        -------
        Union[Image.Image, List[Image.Image]]
            The postprocessed image.
        """
        if self.frame_buffer_size > 1:
            output = postprocess_image(image_tensor, output_type=output_type)
        else:
            output = postprocess_image(image_tensor, output_type=output_type)[0]

        if output_type not in ["pil", "np"]:
            return output.cpu()
        else:
            return output

    @staticmethod
    def get_model_prefix(
        config_path: str,
        few_step_model_type: str,
        use_tiny_vae: bool,
        num_denoising_steps: int,
        height: int,
        width: int,
        dreambooth: Optional[str] = None,
        lora_dict: Optional[dict] = None,
    ) -> str:
        from omegaconf import OmegaConf

        config = OmegaConf.load(config_path)
        third_party = config.third_party_dict
        dreambooth_path = dreambooth or third_party.dreambooth
        if dreambooth_path is None:
            dreambooth_name = "sd15"
        else:
            dreambooth_name = Path(dreambooth_path).stem

        base_lora_list = third_party.get("lora_list", [])
        lora_dict = lora_dict or {}
        for lora_alpha in base_lora_list:
            lora_name = lora_alpha["lora"]
            alpha = lora_alpha["lora_alpha"]
            if lora_name not in lora_dict:
                lora_dict[lora_name] = alpha

        prefix = f"{dreambooth_name}--{few_step_model_type}--step{num_denoising_steps}--"
        for k, v in lora_dict.items():
            prefix += f"{Path(k).stem}-{v}--"
        prefix += f"tiny_vae-{use_tiny_vae}--h-{height}--w-{width}"
        return prefix

    def _load_model(
        self,
        config_path: str,
        num_inference_steps: int,
        height: int,
        width: int,
        t_index_list: Optional[List[int]] = None,
        strength: Optional[float] = None,
        dreambooth_path: Optional[str] = None,
        lora_dict: Optional[Dict[str, float]] = None,
        vae_id: Optional[str] = None,
        acceleration: Literal["none", "xformers", "tensorrt"] = "tensorrt",
        do_add_noise: bool = True,
        few_step_model_type: Optional[str] = None,
        use_tiny_vae: bool = True,
        cfg_type: Literal["none", "full", "self", "initialize"] = "self",
        seed: int = 2,
        engine_dir: Optional[Union[str, Path]] = "engines",
        opt_unet: bool = False,
    ) -> StreamAnimateDiffusionDepth:
        """
        Loads the model.

        This method does the following:

        1. Loads the model from the model_id_or_path.
        3. Loads the VAE model from the vae_id if needed.
        4. Enables acceleration if needed.
        6. Load the safety checker if needed.

        Parameters
        ----------
        config_path : str
            The path to config, all needed checkpoints are list in config file.
        t_index_list : List[int]
            The t_index_list to use for inference.
        dreambooth_path : Optional[str]
            The dreambooth path to use for inference. If not passed,
            will use dreambooth from config.
        lora_dict : Optional[Dict[str, float]], optional
            The lora_dict to load, by default None.
            Keys are the LoRA names and values are the LoRA scales.
            Example: {'LoRA_1' : 0.5 , 'LoRA_2' : 0.7 ,...}
        vae_id : Optional[str], optional
            The vae_id to load, by default None.
        acceleration : Literal["none", "xfomers", "sfast", "tensorrt"], optional
            The acceleration method, by default "tensorrt".
        warmup : int, optional
            The number of warmup steps to perform, by default 10.
        do_add_noise : bool, optional
            Whether to add noise for following denoising steps or not,
            by default True.
        use_lcm_lora : bool, optional
            Whether to use LCM-LoRA or not, by default True.
        use_tiny_vae : bool, optional
            Whether to use TinyVAE or not, by default True.
        cfg_type : Literal["none", "full", "self", "initialize"],
        optional
            The cfg_type for img2img mode, by default "self".
            You cannot use anything other than "none" for txt2img mode.
        seed : int, optional
            The seed, by default 2.
        opt_unet : bool, optional
            Whether to optimize UNet or not, by default False.

        Returns
        -------
        AnimatePipeline
            The loaded pipeline.
        """
        supported_few_step_model = ["LCM"]
        assert (
            few_step_model_type.upper() in supported_few_step_model
        ), f"Only support few_step_model: {supported_few_step_model}, but receive {few_step_model_type}."

        # NOTE: build animatediff pipeline
        from live2diff.animatediff.pipeline import AnimationDepthPipeline

        try:
            pipe = AnimationDepthPipeline.build_pipeline(
                config_path,
            ).to(device=self.device, dtype=self.dtype)
        except Exception:  # No model found
            traceback.print_exc()
            print("Model load has failed. Doesn't exist.")
            exit()

        if few_step_model_type.upper() == "LCM":
            few_step_lora = "latent-consistency/lcm-lora-sdv1-5"
            stream_pipeline_cls = StreamAnimateDiffusionDepth

        print(f"Pipeline class: {stream_pipeline_cls}")
        print(f"Few-step LoRA: {few_step_lora}")

        # parse clip skip from config
        from .config import load_config

        cfg = load_config(config_path)
        third_party_dict = cfg.third_party_dict
        clip_skip = third_party_dict.get("clip_skip", 1)

        stream = stream_pipeline_cls(
            pipe=pipe,
            num_inference_steps=num_inference_steps,
            t_index_list=t_index_list,
            strength=strength,
            torch_dtype=self.dtype,
            width=self.width,
            height=self.height,
            do_add_noise=do_add_noise,
            frame_buffer_size=self.frame_buffer_size,
            use_denoising_batch=self.use_denoising_batch,
            cfg_type=cfg_type,
            clip_skip=clip_skip,
        )

        stream.load_warmup_unet(config_path)
        stream.load_lora(few_step_lora)
        stream.fuse_lora()

        denoising_steps_num = len(stream.t_list)
        stream.prepare_cache(
            height=height,
            width=width,
            denoising_steps_num=denoising_steps_num,
        )
        kv_cache_list = stream.kv_cache_list

        if lora_dict is not None:
            for lora_name, lora_scale in lora_dict.items():
                stream.load_lora(lora_name)
                stream.fuse_lora(lora_scale=lora_scale)
                print(f"Use LoRA: {lora_name} in weights {lora_scale}")

        if use_tiny_vae:
            vae_id = "madebyollin/taesd" if vae_id is None else vae_id
            stream.vae = AutoencoderTiny.from_pretrained(vae_id).to(device=pipe.device, dtype=pipe.dtype)

        try:
            if acceleration == "none":
                stream.pipe.unet = torch.compile(stream.pipe.unet, options={"triton.cudagraphs": True}, fullgraph=True)
                stream.vae = torch.compile(stream.vae, options={"triton.cudagraphs": True}, fullgraph=True)
            if acceleration == "xformers":
                stream.pipe.enable_xformers_memory_efficient_attention()
            if acceleration == "tensorrt":
                from polygraphy import cuda

                from live2diff.acceleration.tensorrt import (
                    TorchVAEEncoder,
                    compile_engine,
                )
                from live2diff.acceleration.tensorrt.engine import (
                    AutoencoderKLEngine,
                    MidasEngine,
                    UNet2DConditionModelDepthEngine,
                )
                from live2diff.acceleration.tensorrt.models import (
                    VAE,
                    InflatedUNetDepth,
                    Midas,
                    VAEEncoder,
                )

                prefix = self.get_model_prefix(
                    config_path=config_path,
                    few_step_model_type=few_step_model_type,
                    use_tiny_vae=use_tiny_vae,
                    num_denoising_steps=denoising_steps_num,
                    height=height,
                    width=width,
                    dreambooth=dreambooth_path,
                    lora_dict=lora_dict,
                )

                engine_dir = os.path.join(Path(engine_dir), prefix)
                unet_path = os.path.join(engine_dir, "unet", "unet.engine")
                unet_opt_path = os.path.join(engine_dir, "unet-opt", "unet.engine.opt")
                midas_path = os.path.join(engine_dir, "depth", "midas.engine")
                vae_encoder_path = os.path.join(engine_dir, "vae", "vae_encoder.engine")
                vae_decoder_path = os.path.join(engine_dir, "vae", "vae_decoder.engine")

                if not os.path.exists(unet_path):
                    os.makedirs(os.path.dirname(unet_path), exist_ok=True)
                    os.makedirs(os.path.dirname(unet_opt_path), exist_ok=True)
                    unet_model = InflatedUNetDepth(
                        fp16=True,
                        device=stream.device,
                        max_batch_size=stream.trt_unet_batch_size,
                        min_batch_size=stream.trt_unet_batch_size,
                        embedding_dim=stream.text_encoder.config.hidden_size,
                        unet_dim=stream.unet.config.in_channels,
                        kv_cache_list=kv_cache_list,
                    )
                    compile_engine(
                        torch_model=stream.unet,
                        model_data=unet_model,
                        onnx_path=unet_path + ".onnx",
                        onnx_opt_path=unet_opt_path,  # use specific folder for external data
                        engine_path=unet_path,
                        opt_image_height=height,
                        opt_image_width=width,
                        opt_batch_size=stream.trt_unet_batch_size,
                        engine_build_options={"ignore_onnx_optimize": not opt_unet},
                    )

                if not os.path.exists(vae_decoder_path):
                    os.makedirs(os.path.dirname(vae_decoder_path), exist_ok=True)
                    stream.vae.forward = stream.vae.decode
                    max_bz = WARMUP_FRAMES
                    opt_bz = min_bz = 1
                    vae_decoder_model = VAE(
                        device=stream.device,
                        max_batch_size=max_bz,
                        min_batch_size=min_bz,
                    )
                    compile_engine(
                        torch_model=stream.vae,
                        model_data=vae_decoder_model,
                        onnx_path=vae_decoder_path + ".onnx",
                        onnx_opt_path=vae_decoder_path + ".opt.onnx",
                        engine_path=vae_decoder_path,
                        opt_image_height=height,
                        opt_image_width=width,
                        opt_batch_size=opt_bz,
                    )
                    delattr(stream.vae, "forward")

                if not os.path.exists(midas_path):
                    os.makedirs(os.path.dirname(midas_path), exist_ok=True)
                    max_bz = WARMUP_FRAMES
                    opt_bz = min_bz = 1
                    midas = Midas(
                        fp16=True,
                        device=stream.device,
                        max_batch_size=max_bz,
                        min_batch_size=min_bz,
                    )
                    compile_engine(
                        torch_model=stream.depth_detector.half(),
                        model_data=midas,
                        onnx_path=midas_path + ".onnx",
                        onnx_opt_path=midas_path + ".opt.onnx",
                        engine_path=midas_path,
                        opt_batch_size=opt_bz,
                        opt_image_height=384,
                        opt_image_width=384,
                        engine_build_options={
                            "auto_cast": False,
                            "handle_batch_norm": True,
                            "ignore_onnx_optimize": True,
                        },
                    )

                if not os.path.exists(vae_encoder_path):
                    os.makedirs(os.path.dirname(vae_encoder_path), exist_ok=True)
                    vae_encoder = TorchVAEEncoder(stream.vae).to(torch.device("cuda"))
                    max_bz = WARMUP_FRAMES
                    opt_bz = min_bz = 1
                    vae_encoder_model = VAEEncoder(
                        device=stream.device,
                        max_batch_size=max_bz,
                        min_batch_size=min_bz,
                    )
                    compile_engine(
                        torch_model=vae_encoder,
                        model_data=vae_encoder_model,
                        onnx_path=vae_encoder_path + ".onnx",
                        onnx_opt_path=vae_encoder_path + ".opt.onnx",
                        engine_path=vae_encoder_path,
                        opt_batch_size=opt_bz,
                        opt_image_height=height,
                        opt_image_width=width,
                    )
                cuda_stream = cuda.Stream()

                vae_config = stream.vae.config
                vae_dtype = stream.vae.dtype
                midas_dtype = stream.depth_detector.dtype

                stream.unet = UNet2DConditionModelDepthEngine(unet_path, cuda_stream, use_cuda_graph=False)
                stream.depth_detector = MidasEngine(midas_path, cuda_stream, use_cuda_graph=False)
                setattr(stream.depth_detector, "dtype", midas_dtype)
                stream.vae = AutoencoderKLEngine(
                    vae_encoder_path,
                    vae_decoder_path,
                    cuda_stream,
                    stream.pipe.vae_scale_factor,
                    use_cuda_graph=False,
                )
                setattr(stream.vae, "config", vae_config)
                setattr(stream.vae, "dtype", vae_dtype)

                stream.is_tensorrt = True

                gc.collect()
                torch.cuda.empty_cache()

                print("TensorRT acceleration enabled.")

        except Exception:
            traceback.print_exc()
            print("Acceleration has failed. Falling back to normal mode.")

        if seed < 0:  # Random seed
            seed = np.random.randint(0, 1000000)

        return stream