Spaces:
Sleeping
Sleeping
File size: 16,454 Bytes
d16b52d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
# Adapted from https://github.com/open-mmlab/PIA/blob/main/animatediff/pipelines/i2v_pipeline.py
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import torch
from diffusers.configuration_utils import FrozenDict
from diffusers.loaders import TextualInversionLoaderMixin
from diffusers.models import AutoencoderKL
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from diffusers.utils import BaseOutput, deprecate, is_accelerate_available, logging
from packaging import version
from transformers import CLIPTextModel, CLIPTokenizer
from ..models.depth_utils import MidasDetector
from ..models.unet_depth_streaming import UNet3DConditionStreamingModel
from .loader import LoraLoaderWithWarmup
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@dataclass
class AnimationPipelineOutput(BaseOutput):
videos: Union[torch.Tensor, np.ndarray]
input_images: Optional[Union[torch.Tensor, np.ndarray]] = None
class AnimationDepthPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderWithWarmup):
_optional_components = []
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet3DConditionStreamingModel,
depth_model: MidasDetector,
scheduler: Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
],
):
super().__init__()
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
" file"
)
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(scheduler.config)
new_config["steps_offset"] = 1
scheduler._internal_dict = FrozenDict(new_config)
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
)
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(scheduler.config)
new_config["clip_sample"] = False
scheduler._internal_dict = FrozenDict(new_config)
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
version.parse(unet.config._diffusers_version).base_version
) < version.parse("0.9.0.dev0")
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
deprecation_message = (
"The configuration file of the unet has set the default `sample_size` to smaller than"
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
" in the config might lead to incorrect results in future versions. If you have downloaded this"
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
" the `unet/config.json` file"
)
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(unet.config)
new_config["sample_size"] = 64
unet._internal_dict = FrozenDict(new_config)
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
depth_model=depth_model,
scheduler=scheduler,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.log_denoising_mean = False
def enable_vae_slicing(self):
self.vae.enable_slicing()
def disable_vae_slicing(self):
self.vae.disable_slicing()
def enable_sequential_cpu_offload(self, gpu_id=0):
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("Please install accelerate via `pip install accelerate`")
device = torch.device(f"cuda:{gpu_id}")
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
if cpu_offloaded_model is not None:
cpu_offload(cpu_offloaded_model, device)
@property
def _execution_device(self):
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
return self.device
for module in self.unet.modules():
if (
hasattr(module, "_hf_hook")
and hasattr(module._hf_hook, "execution_device")
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return self.device
def _encode_prompt(
self, prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt, clip_skip=None
):
batch_size = len(prompt) if isinstance(prompt, list) else 1
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = text_inputs.attention_mask.to(device)
else:
attention_mask = None
if clip_skip is None:
text_embeddings = self.text_encoder(
text_input_ids.to(device),
attention_mask=attention_mask,
)
text_embeddings = text_embeddings[0]
else:
# support ckip skip here, suitable for model based on NAI~
text_embeddings = self.text_encoder(
text_input_ids.to(device),
attention_mask=attention_mask,
output_hidden_states=True,
)
text_embeddings = text_embeddings[-1][-(clip_skip + 1)]
text_embeddings = self.text_encoder.text_model.final_layer_norm(text_embeddings)
# duplicate text embeddings for each generation per prompt, using mps friendly method
bs_embed, seq_len, _ = text_embeddings.shape
text_embeddings = text_embeddings.repeat(1, num_videos_per_prompt, 1)
text_embeddings = text_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
max_length = text_input_ids.shape[-1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = uncond_input.attention_mask.to(device)
else:
attention_mask = None
uncond_embeddings = self.text_encoder(
uncond_input.input_ids.to(device),
attention_mask=attention_mask,
)
uncond_embeddings = uncond_embeddings[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = uncond_embeddings.shape[1]
uncond_embeddings = uncond_embeddings.repeat(1, num_videos_per_prompt, 1)
uncond_embeddings = uncond_embeddings.view(batch_size * num_videos_per_prompt, seq_len, -1)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
return text_embeddings
@classmethod
def build_pipeline(cls, config_path: str, dreambooth: Optional[str] = None):
"""We build pipeline from config path"""
from omegaconf import OmegaConf
from ...utils.config import load_config
from ..converter import load_third_party_checkpoints
from ..models.unet_depth_streaming import UNet3DConditionStreamingModel
cfg = load_config(config_path)
pretrained_model_path = cfg.pretrained_model_path
unet_additional_kwargs = cfg.get("unet_additional_kwargs", {})
noise_scheduler_kwargs = cfg.noise_scheduler_kwargs
third_party_dict = cfg.get("third_party_dict", {})
noise_scheduler = DDIMScheduler(**OmegaConf.to_container(noise_scheduler_kwargs))
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
unet = UNet3DConditionStreamingModel.from_pretrained_2d(
pretrained_model_path,
subfolder="unet",
unet_additional_kwargs=OmegaConf.to_container(unet_additional_kwargs) if unet_additional_kwargs else {},
)
motion_module_path = cfg.motion_module_path
# load motion module to unet
mm_checkpoint = torch.load(motion_module_path, map_location="cpu")
if "global_step" in mm_checkpoint:
print(f"global_step: {mm_checkpoint['global_step']}")
state_dict = mm_checkpoint["state_dict"] if "state_dict" in mm_checkpoint else mm_checkpoint
# NOTE: hard code here: remove `grid` from state_dict
state_dict = {k.replace("module.", ""): v for k, v in state_dict.items() if "grid" not in k}
m, u = unet.load_state_dict(state_dict, strict=False)
assert len(u) == 0, f"Find unexpected keys ({len(u)}): {u}"
print(f"missing keys: {len(m)}, unexpected keys: {len(u)}")
unet = unet.to(device="cuda", dtype=torch.float16)
vae = vae.to(device="cuda", dtype=torch.bfloat16)
text_encoder = text_encoder.to(device="cuda", dtype=torch.float16)
depth_model = MidasDetector(cfg.depth_model_path).to(device="cuda", dtype=torch.float16)
pipeline = cls(
unet=unet,
vae=vae,
tokenizer=tokenizer,
text_encoder=text_encoder,
depth_model=depth_model,
scheduler=noise_scheduler,
)
pipeline = load_third_party_checkpoints(pipeline, third_party_dict, dreambooth)
return pipeline
@classmethod
def build_warmup_unet(cls, config_path: str, dreambooth: Optional[str] = None):
from omegaconf import OmegaConf
from ...utils.config import load_config
from ..converter import load_third_party_unet
from ..models.unet_depth_warmup import UNet3DConditionWarmupModel
cfg = load_config(config_path)
pretrained_model_path = cfg.pretrained_model_path
unet_additional_kwargs = cfg.get("unet_additional_kwargs", {})
third_party_dict = cfg.get("third_party_dict", {})
unet = UNet3DConditionWarmupModel.from_pretrained_2d(
pretrained_model_path,
subfolder="unet",
unet_additional_kwargs=OmegaConf.to_container(unet_additional_kwargs) if unet_additional_kwargs else {},
)
motion_module_path = cfg.motion_module_path
# load motion module to unet
mm_checkpoint = torch.load(motion_module_path, map_location="cpu")
if "global_step" in mm_checkpoint:
print(f"global_step: {mm_checkpoint['global_step']}")
state_dict = mm_checkpoint["state_dict"] if "state_dict" in mm_checkpoint else mm_checkpoint
# NOTE: hard code here: remove `grid` from state_dict
state_dict = {k.replace("module.", ""): v for k, v in state_dict.items() if "grid" not in k}
m, u = unet.load_state_dict(state_dict, strict=False)
assert len(u) == 0, f"Find unexpected keys ({len(u)}): {u}"
print(f"missing keys: {len(m)}, unexpected keys: {len(u)}")
unet = load_third_party_unet(unet, third_party_dict, dreambooth)
return unet
def prepare_cache(self, height: int, width: int, denoising_steps_num: int):
vae = self.vae
scale_factor = 2 ** (len(vae.config.block_out_channels) - 1)
self.unet.set_info_for_attn(height // scale_factor, width // scale_factor)
kv_cache_list = self.unet.prepare_cache(denoising_steps_num)
return kv_cache_list
def prepare_warmup_unet(self, height: int, width: int, unet):
vae = self.vae
scale_factor = 2 ** (len(vae.config.block_out_channels) - 1)
unet.set_info_for_attn(height // scale_factor, width // scale_factor)
|