Lakshita336 commited on
Commit
d61a041
·
verified ·
1 Parent(s): 6b73573

Upload 4 files

Browse files
Files changed (4) hide show
  1. app.py +175 -0
  2. main.py +16 -0
  3. requirments.txt +8 -0
  4. utils.py +72 -0
app.py ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from langchain.chat_models import ChatOpenAI
2
+ import streamlit as st
3
+ from gtts import gTTS
4
+ from io import BytesIO
5
+ from langchain.chains import RetrievalQA
6
+ from langchain.chains.conversation.memory import ConversationBufferWindowMemory
7
+ from streamlit_mic_recorder import speech_to_text
8
+ from langchain.prompts import (
9
+ SystemMessagePromptTemplate,
10
+ HumanMessagePromptTemplate,
11
+ ChatPromptTemplate,
12
+ MessagesPlaceholder
13
+ )
14
+ from langchain_community.llms.huggingface_hub import HuggingFaceHub
15
+ from streamlit_chat import message
16
+
17
+
18
+ with st.sidebar:
19
+ if "name" not in st.session_state:
20
+ st.session_state["name"] =""
21
+
22
+ name= st.text_input("Enter name", st.session_state["name"])
23
+
24
+ if "age" not in st.session_state:
25
+ st.session_state["age"] =""
26
+ age= st.text_input("Enter age", st.session_state["age"])
27
+ submit = st.button("Submit")
28
+
29
+ if submit:
30
+ st.session_state["name"] = name
31
+ st.session_state["age"] = age
32
+ st.write("name and age submitted")
33
+
34
+ st.title("Mental Health Bot :heartpulse:")
35
+ st.subheader("Here to help")
36
+
37
+ if 'responses' not in st.session_state:
38
+ st.session_state['responses'] = ["How can I assist you?"]
39
+
40
+ if 'requests' not in st.session_state:
41
+ st.session_state['requests'] = []
42
+
43
+ access_token = HUGGING_FACE_API
44
+ hf_repo_id = 'mistralai/Mistral-7B-Instruct-v0.1'
45
+
46
+
47
+ llm =HuggingFaceHub(
48
+ repo_id=hf_repo_id,
49
+ model_kwargs={"temperature": 0.2, "max_length": 32000}, huggingfacehub_api_token = access_token
50
+ )
51
+
52
+
53
+ if 'buffer_memory' not in st.session_state:
54
+ st.session_state.buffer_memory=ConversationBufferWindowMemory(k=3,return_messages=True)
55
+
56
+
57
+ system_msg_template = SystemMessagePromptTemplate.from_template(template="""Answer the question as truthfully as possible using the provided context,
58
+ and if the answer is not contained within the text below, say 'I don't know'""")
59
+
60
+
61
+ human_msg_template = HumanMessagePromptTemplate.from_template(template="{input}")
62
+
63
+ prompt_template = ChatPromptTemplate.from_messages([system_msg_template, MessagesPlaceholder(variable_name="history"), human_msg_template])
64
+
65
+ #conversation = ConversationChain.from_template(memory=st.session_state.buffer_memory,
66
+ # prompt = prompt_template, llm=llm, verbose = True)
67
+
68
+ import re
69
+ from langchain.memory import ConversationBufferMemory
70
+
71
+ # Define the extract_helpful_answer function
72
+ def extract_helpful_answer(text):
73
+ match = re.search(r'Helpful Answer:(.*)', text)
74
+ if match:
75
+ return match.group(1).strip()
76
+ else:
77
+ return None
78
+
79
+ # Initialize the conversation buffer memory
80
+ memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
81
+
82
+ from utils import retriever
83
+ # Create the RetrievalQA instance
84
+ qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, memory=memory)
85
+
86
+ # Function to process LLM response and extract helpful answer
87
+ def process_llm_response(llm_response):
88
+ if 'result' in llm_response:
89
+ helpful_answer = extract_helpful_answer(llm_response['result'])
90
+ if helpful_answer:
91
+ return helpful_answer
92
+ else:
93
+ return "No helpful answer found."
94
+
95
+ #container for chat history
96
+ response_container = st.container()
97
+ #container for text box
98
+ textcontainer = st.container()
99
+
100
+ #from utils import find_match
101
+ def speech_recognition_callback():
102
+ # Ensure that speech output is available
103
+ if st.session_state.my_stt_output is None:
104
+ st.session_state.p01_error_message = "Please record your response again."
105
+ return
106
+
107
+ # Clear any previous error messages
108
+ st.session_state.p01_error_message = None
109
+
110
+ # Store the speech output in the session state
111
+ st.session_state.speech_input = st.session_state.my_stt_output
112
+
113
+ def text_to_speech(text):
114
+ # Use gTTS to convert text to speech
115
+ tts = gTTS(text=text, lang='en')
116
+ # Save the speech as bytes in memory
117
+ fp = BytesIO()
118
+ tts.write_to_fp(fp)
119
+ return fp
120
+
121
+ # Add a text input field for both speech and text queries
122
+ # Add a text input field for both speech and text queries
123
+ with textcontainer:
124
+ # Use the speech_to_text function to capture speech input
125
+ speech_input = speech_to_text(
126
+ key='my_stt',
127
+ callback=speech_recognition_callback
128
+ )
129
+
130
+ # Check if speech input is available
131
+ if 'speech_input' in st.session_state and st.session_state.speech_input:
132
+ # Display the speech input
133
+ st.text(f"Speech Input: {st.session_state.speech_input}")
134
+
135
+ # Process the speech input as a query
136
+ query = st.session_state.speech_input
137
+ with st.spinner("processing....."):
138
+ response = qa(query)
139
+ helpful_answer = process_llm_response(response)
140
+ # Append the query and response to session state
141
+ st.session_state.requests.append(query)
142
+ st.session_state.responses.append(helpful_answer)
143
+
144
+ # Convert the response to speech
145
+ speech_fp = text_to_speech(helpful_answer)
146
+ # Play the speech
147
+ st.audio(speech_fp, format='audio/mp3')
148
+
149
+ # Add a text input field for query
150
+ query = st.text_input("Query: ", key="input")
151
+
152
+ # Process the query if it's not empty
153
+ if query:
154
+ with st.spinner("typing....."):
155
+ response = qa(query)
156
+ helpful_answer = process_llm_response(response)
157
+ # Append the query and response to session state
158
+ st.session_state.requests.append(query)
159
+ st.session_state.responses.append(helpful_answer)
160
+
161
+ # Convert the response to speech
162
+ speech_fp = text_to_speech(helpful_answer)
163
+ # Play the speech
164
+ st.audio(speech_fp, format='audio/mp3')
165
+
166
+
167
+
168
+ # Display the chat history and response
169
+ with response_container:
170
+ if st.session_state['responses']:
171
+
172
+ for i in range(len(st.session_state['responses'])):
173
+ message(st.session_state['responses'][i],key=str(i))
174
+ if i < len(st.session_state['requests']):
175
+ message(st.session_state["requests"][i], is_user=True,key=str(i)+ '_user')
main.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This is a sample Python script.
2
+
3
+ # Press Shift+F10 to execute it or replace it with your code.
4
+ # Press Double Shift to search everywhere for classes, files, tool windows, actions, and settings.
5
+
6
+
7
+ def print_hi(name):
8
+ # Use a breakpoint in the code line below to debug your script.
9
+ print(f'Hi, {name}') # Press Ctrl+F8 to toggle the breakpoint.
10
+
11
+
12
+ # Press the green button in the gutter to run the script.
13
+ if __name__ == '__main__':
14
+ print_hi('PyCharm')
15
+
16
+ # See PyCharm help at https://www.jetbrains.com/help/pycharm/
requirments.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ sentence_transformers
2
+ langchain_community
3
+ streamlit
4
+ gtts
5
+ io
6
+ streamlit_mic_recorder
7
+ streamlit_chat
8
+ langchain
utils.py ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sentence_transformers import SentenceTransformer
2
+ from langchain_community.vectorstores import Chroma
3
+ from langchain_community.embeddings import HuggingFaceEmbeddings
4
+ from langchain_community.llms import HuggingFaceHub
5
+ import openai
6
+ import streamlit as st
7
+ import re
8
+
9
+ #openai_api_key = "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"
10
+ model = SentenceTransformer('sentence-transformers/multi-qa-MiniLM-L6-cos-v1')
11
+ # Define the embedding function using HuggingFaceEmbeddings
12
+ embeddings = HuggingFaceEmbeddings(model_name = 'sentence-transformers/multi-qa-MiniLM-L6-cos-v1')
13
+
14
+ vectordb = Chroma(persist_directory= r"C:\Users\Lakshita\PycharmProjects\trial_bot\vector db", #enter chroma directory
15
+ embedding_function=embeddings)
16
+ #index = pinecone.Index('langchain-chatbot')
17
+
18
+ # Create a retriever from the Chroma object
19
+ retriever = vectordb.as_retriever()
20
+
21
+ def find_match(input_text):
22
+ # Retrieve relevant documents based on the input query
23
+ docs = retriever.get_relevant_documents(input_text)
24
+
25
+ match_texts = [doc.page_content for doc in docs]
26
+
27
+ # Return the concatenated texts of the relevant documents
28
+ return "\n".join(match_texts)
29
+
30
+
31
+ from transformers import pipeline
32
+
33
+ # Load the text generation pipeline from Hugging Face
34
+ text_generator = pipeline("text-generation", model="gpt2")
35
+
36
+ def query_refiner(conversation, query):
37
+ # Formulate the prompt for the model
38
+ prompt = f"Given the following user query and conversation log, formulate a question that would be the most relevant to provide the user with an answer from a knowledge base.\n\nCONVERSATION LOG: \n{conversation}\n\nQuery: {query}\n\nRefined Query:"
39
+
40
+ # Generate the response using the Hugging Face model
41
+ response = text_generator(prompt, max_length=256, temperature=0.7, top_p=1.0, pad_token_id=text_generator.tokenizer.eos_token_id)
42
+
43
+ # Extract the refined query from the response
44
+ refined_query = response[0]['generated_text'].split('Refined Query:')[-1].strip()
45
+
46
+ return refined_query
47
+
48
+
49
+ def get_conversation_string():
50
+ conversation_string = ""
51
+ for i in range(len(st.session_state['responses'])-1):
52
+
53
+ conversation_string += "Human: "+st.session_state['requests'][i] + "\n"
54
+ conversation_string += "Bot: "+ st.session_state['responses'][i+1] + "\n"
55
+ return conversation_string
56
+
57
+
58
+ """
59
+ from openai import OpenAI
60
+ from audio_recorder_streamlit import audio_recorder
61
+
62
+ client=OpenAI(api_key="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")
63
+
64
+ def speech_to_text(audio_data):
65
+ with open(audio_data, "rb") as audio_file:
66
+ transcript = client.audio.transcriptions.create(
67
+ model="whisper-1",
68
+ response_format="text",
69
+ file=audio_file
70
+ )
71
+ return transcript
72
+ """