Kiss3DGen / app.py
JiantaoLin
new
02a9751
raw
history blame
20.5 kB
import os
import gradio as gr
import subprocess
import spaces
import ctypes
import shlex
import base64
import re
import sys
from models.ISOMER.scripts.utils import fix_vert_color_glb
sys.path.append(os.path.abspath(os.path.join(__file__, '../')))
if 'OMP_NUM_THREADS' not in os.environ:
os.environ['OMP_NUM_THREADS'] = '32'
import shutil
import torch
import json
import requests
import shutil
import threading
from PIL import Image
import time
torch.backends.cuda.matmul.allow_tf32 = True
import trimesh
import random
import time
import numpy as np
from video_render import render_video_from_obj
access_token = os.getenv("HUGGINGFACE_TOKEN")
subprocess.run(
shlex.split(
"pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py310_cu121_pyt240/download.html"
)
)
subprocess.run(
shlex.split(
"pip install ./extension/nvdiffrast-0.3.1+torch-py3-none-any.whl --force-reinstall --no-deps"
)
)
subprocess.run(
shlex.split(
"pip install ./extension/renderutils_plugin-0.1.0-cp310-cp310-linux_x86_64.whl --force-reinstall --no-deps"
)
)
# download cudatoolkit
def install_cuda_toolkit():
# CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run"
# CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.run"
CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.1.0/local_installers/cuda_12.1.0_530.30.02_linux.run"
CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])
os.environ["CUDA_HOME"] = "/usr/local/cuda"
os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"])
os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % (
os.environ["CUDA_HOME"],
"" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
)
# Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range
os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6"
print("==> finfish install")
install_cuda_toolkit()
@spaces.GPU
def check_gpu():
os.environ['CUDA_HOME'] = '/usr/local/cuda-12.1'
os.environ['PATH'] += ':/usr/local/cuda-12.1/bin'
# os.environ['LD_LIBRARY_PATH'] += ':/usr/local/cuda-12.1/lib64'
os.environ['LD_LIBRARY_PATH'] = "/usr/local/cuda-12.1/lib64:" + os.environ.get('LD_LIBRARY_PATH', '')
subprocess.run(['nvidia-smi']) # 测试 CUDA 是否可用
# 显式加载 libnvrtc.so.12
cuda_lib_path = "/usr/local/cuda-12.1/lib64/libnvrtc.so.12"
try:
ctypes.CDLL(cuda_lib_path, mode=ctypes.RTLD_GLOBAL)
print(f"Successfully preloaded {cuda_lib_path}")
except OSError as e:
print(f"Failed to preload {cuda_lib_path}: {e}")
print(f"torch.cuda.is_available:{torch.cuda.is_available()}")
check_gpu()
from pipeline.kiss3d_wrapper import init_wrapper_from_config, run_text_to_3d, run_image_to_3d, image2mesh_preprocess, image2mesh_main
is_running = False
TEXT_URL = "http://127.0.0.1:9239/prompt"
IMG_URL = ""
KISS_3D_TEXT_FOLDER = "./outputs/text2"
KISS_3D_IMG_FOLDER = "./outputs/image2"
# Add logo file path and hyperlinks
LOGO_PATH = "app_assets/logo_temp_.png" # Update this to the actual path of your logo
ARXIV_LINK = "https://arxiv.org/abs/example"
GITHUB_LINK = "https://github.com/example"
k3d_wrapper = init_wrapper_from_config('./pipeline/pipeline_config/default.yaml')
TEMP_MESH_ADDRESS=''
mesh_cache = None
preprocessed_input_image = None
def save_cached_mesh():
global mesh_cache
return mesh_cache
# if mesh_cache is None:
# return None
# return save_py3dmesh_with_trimesh_fast(mesh_cache)
def save_py3dmesh_with_trimesh_fast(meshes, save_glb_path=TEMP_MESH_ADDRESS, apply_sRGB_to_LinearRGB=True):
from pytorch3d.structures import Meshes
import trimesh
# convert from pytorch3d meshes to trimesh mesh
vertices = meshes.verts_packed().cpu().float().numpy()
triangles = meshes.faces_packed().cpu().long().numpy()
np_color = meshes.textures.verts_features_packed().cpu().float().numpy()
if save_glb_path.endswith(".glb"):
# rotate 180 along +Y
vertices[:, [0, 2]] = -vertices[:, [0, 2]]
def srgb_to_linear(c_srgb):
c_linear = np.where(c_srgb <= 0.04045, c_srgb / 12.92, ((c_srgb + 0.055) / 1.055) ** 2.4)
return c_linear.clip(0, 1.)
if apply_sRGB_to_LinearRGB:
np_color = srgb_to_linear(np_color)
assert vertices.shape[0] == np_color.shape[0]
assert np_color.shape[1] == 3
assert 0 <= np_color.min() and np_color.max() <= 1, f"min={np_color.min()}, max={np_color.max()}"
mesh = trimesh.Trimesh(vertices=vertices, faces=triangles, vertex_colors=np_color)
mesh.remove_unreferenced_vertices()
# save mesh
mesh.export(save_glb_path)
if save_glb_path.endswith(".glb"):
fix_vert_color_glb(save_glb_path)
print(f"saving to {save_glb_path}")
#
#
@spaces.GPU
def text_to_detailed(prompt, seed=None):
print(f"Before text_to_detailed: {torch.cuda.memory_allocated() / 1024**3} GB")
return k3d_wrapper.get_detailed_prompt(prompt, seed)
@spaces.GPU
def text_to_image(prompt, seed=None, strength=1.0,lora_scale=1.0, num_inference_steps=30, redux_hparam=None, init_image=None, **kwargs):
print(f"Before text_to_image: {torch.cuda.memory_allocated() / 1024**3} GB")
k3d_wrapper.renew_uuid()
init_image = None
if init_image_path is not None:
init_image = Image.open(init_image_path)
result = k3d_wrapper.generate_3d_bundle_image_text(
prompt,
image=init_image,
strength=strength,
lora_scale=lora_scale,
num_inference_steps=num_inference_steps,
seed=int(seed) if seed is not None else None,
redux_hparam=redux_hparam,
save_intermediate_results=True,
**kwargs)
return result[-1]
def image2mesh_preprocess_(input_image_, seed, use_mv_rgb=True):
global preprocessed_input_image
seed = int(seed) if seed is not None else None
# TODO: delete this later
k3d_wrapper.del_llm_model()
input_image_save_path, reference_save_path, caption = image2mesh_preprocess(k3d_wrapper, input_image_, seed, use_mv_rgb)
preprocessed_input_image = Image.open(input_image_save_path)
return reference_save_path, caption
@spaces.GPU
def image2mesh_main_(reference_3d_bundle_image, caption, seed, strength1=0.5, strength2=0.95, enable_redux=True, use_controlnet=True, if_video=True):
global mesh_cache
seed = int(seed) if seed is not None else None
# TODO: delete this later
k3d_wrapper.del_llm_model()
input_image = preprocessed_input_image
reference_3d_bundle_image = torch.tensor(reference_3d_bundle_image).permute(2,0,1)/255
gen_save_path, recon_mesh_path = image2mesh_main(k3d_wrapper, input_image, reference_3d_bundle_image, caption=caption, seed=seed, strength1=strength1, strength2=strength2, enable_redux=enable_redux, use_controlnet=use_controlnet)
mesh_cache = recon_mesh_path
# gen_save_ = Image.open(gen_save_path)
if if_video:
video_path = recon_mesh_path.replace('.obj','.mp4').replace('.glb','.mp4')
render_video_from_obj(recon_mesh_path, video_path)
print(f"After bundle_image_to_mesh: {torch.cuda.memory_allocated() / 1024**3} GB")
return gen_save_path, video_path
else:
return gen_save_path, recon_mesh_path
# return gen_save_path, recon_mesh_path
@spaces.GPU
def bundle_image_to_mesh(
gen_3d_bundle_image,
lrm_radius = 4.15,
isomer_radius = 4.5,
reconstruction_stage1_steps = 10,
reconstruction_stage2_steps = 50,
save_intermediate_results=True,
if_video=True
):
global mesh_cache
print(f"Before bundle_image_to_mesh: {torch.cuda.memory_allocated() / 1024**3} GB")
# TODO: delete this later
k3d_wrapper.del_llm_model()
print(f"Before bundle_image_to_mesh after deleting llm model: {torch.cuda.memory_allocated() / 1024**3} GB")
gen_3d_bundle_image = torch.tensor(gen_3d_bundle_image).permute(2,0,1)/255
# recon from 3D Bundle image
recon_mesh_path = k3d_wrapper.reconstruct_3d_bundle_image(gen_3d_bundle_image, lrm_render_radius=lrm_radius, isomer_radius=isomer_radius, save_intermediate_results=save_intermediate_results, reconstruction_stage1_steps=int(reconstruction_stage1_steps), reconstruction_stage2_steps=int(reconstruction_stage2_steps))
mesh_cache = recon_mesh_path
if if_video:
video_path = recon_mesh_path.replace('.obj','.mp4').replace('.glb','.mp4')
# # 检查这个video_path文件大小是是否超过50KB,不超过的话就认为是空文件,需要重新渲染
# if os.path.exists(video_path):
# print(f"file size:{os.path.getsize(video_path)}")
# if os.path.getsize(video_path) > 50*1024:
# print(f"video path:{video_path}")
# return video_path
render_video_from_obj(recon_mesh_path, video_path)
print(f"After bundle_image_to_mesh: {torch.cuda.memory_allocated() / 1024**3} GB")
return video_path
else:
return recon_mesh_path
_HEADER_=f"""
<img src="{LOGO_PATH}">
<h2><b>Official 🤗 Gradio Demo</b></h2><h2>
<b>Kiss3DGen: Repurposing Image Diffusion Models for 3D Asset Generation</b></a></h2>
<p>**Kiss3DGen** is xxxxxxxxx</p>
[![arXiv](https://img.shields.io/badge/arXiv-Link-red)]({ARXIV_LINK}) [![GitHub](https://img.shields.io/badge/GitHub-Repo-blue)]({GITHUB_LINK})
"""
_CITE_ = r"""
<h2>If Kiss3DGen is helpful, please help to ⭐ the <a href='{""" + GITHUB_LINK + r"""}' target='_blank'>Github Repo</a>. Thanks!</h2>
📝 **Citation**
If you find our work useful for your research or applications, please cite using this bibtex:
```bibtex
@article{xxxx,
title={xxxx},
author={xxxx},
journal={xxxx},
year={xxxx}
}
```
📋 **License**
Apache-2.0 LICENSE. Please refer to the [LICENSE file](https://huggingface.co/spaces/TencentARC/InstantMesh/blob/main/LICENSE) for details.
📧 **Contact**
If you have any questions, feel free to open a discussion or contact us at <b>xxx@xxxx</b>.
"""
def image_to_base64(image_path):
"""Converts an image file to a base64-encoded string."""
with open(image_path, "rb") as img_file:
return base64.b64encode(img_file.read()).decode('utf-8')
def main():
torch.set_grad_enabled(False)
# Convert the logo image to base64
logo_base64 = image_to_base64(LOGO_PATH)
# with gr.Blocks() as demo:
with gr.Blocks(css="""
body {
display: flex;
justify-content: center;
align-items: center;
min-height: 100vh;
margin: 0;
padding: 0;
}
#col-container { margin: 0px auto; max-width: 200px; }
.gradio-container {
max-width: 1000px;
margin: auto;
width: 100%;
}
#center-align-column {
display: flex;
justify-content: center;
align-items: center;
}
#right-align-column {
display: flex;
justify-content: flex-end;
align-items: center;
}
h1 {text-align: center;}
h2 {text-align: center;}
h3 {text-align: center;}
p {text-align: center;}
img {text-align: right;}
.right {
display: block;
margin-left: auto;
}
.center {
display: block;
margin-left: auto;
margin-right: auto;
width: 50%;
#content-container {
max-width: 1200px;
margin: 0 auto;
}
#example-container {
max-width: 300px;
margin: 0 auto;
}
""",elem_id="col-container") as demo:
# Header Section
# gr.Image(value=LOGO_PATH, width=64, height=64)
# gr.Markdown(_HEADER_)
with gr.Row(elem_id="content-container"):
# with gr.Column(scale=1):
# pass
# with gr.Column(scale=1, elem_id="right-align-column"):
# # gr.Image(value=LOGO_PATH, interactive=False, show_label=False, width=64, height=64, elem_id="logo-image")
# # gr.Markdown(f"<img src='{LOGO_PATH}' alt='Logo' style='width:64px;height:64px;border:0;'>")
# # gr.HTML(f"<img src='data:image/png;base64,{logo_base64}' alt='Logo' class='right' style='width:64px;height:64px;border:0;text-align:right;'>")
# pass
with gr.Column(scale=7, elem_id="center-align-column"):
gr.Markdown(f"""
## Official 🤗 Gradio Demo
# Kiss3DGen: Repurposing Image Diffusion Models for 3D Asset Generation""")
gr.HTML(f"<img src='data:image/png;base64,{logo_base64}' alt='Logo' class='center' style='width:64px;height:64px;border:0;text-align:center;'>")
gr.HTML(f"""
<div style="display: flex; justify-content: center; align-items: center; gap: 10px;">
<a href="{ARXIV_LINK}" target="_blank">
<img src="https://img.shields.io/badge/arXiv-Link-red" alt="arXiv">
</a>
<a href="{GITHUB_LINK}" target="_blank">
<img src="https://img.shields.io/badge/GitHub-Repo-blue" alt="GitHub">
</a>
</div>
""")
# gr.HTML(f"""
# <div style="display: flex; gap: 10px; align-items: center;"><a href="{ARXIV_LINK}" target="_blank" rel="noopener noreferrer"><img src="https://img.shields.io/badge/arXiv-Link-red" alt="arXiv"></a> <a href="{GITHUB_LINK}" target="_blank" rel="noopener noreferrer"><img src="https://img.shields.io/badge/GitHub-Repo-blue" alt="GitHub"></a></div>
# """)
# gr.Markdown(f"""
# [![arXiv](https://img.shields.io/badge/arXiv-Link-red)]({ARXIV_LINK}) [![GitHub](https://img.shields.io/badge/GitHub-Repo-blue)]({GITHUB_LINK})
# """, elem_id="title")
# with gr.Column(scale=1):
# pass
# with gr.Row():
# gr.Markdown(f"[![arXiv](https://img.shields.io/badge/arXiv-Link-red)]({ARXIV_LINK})")
# gr.Markdown(f"[![GitHub](https://img.shields.io/badge/GitHub-Repo-blue)]({GITHUB_LINK})")
# Tabs Section
with gr.Tabs(selected='tab_text_to_3d', elem_id="content-container") as main_tabs:
with gr.TabItem('Text-to-3D', id='tab_text_to_3d'):
with gr.Row():
with gr.Column(scale=1):
prompt = gr.Textbox(value="", label="Input Prompt", lines=4)
seed1 = gr.Number(value=10, label="Seed")
with gr.Row(elem_id="example-container"):
gr.Examples(
examples=[
# ["A tree with red leaves"],
# ["A dragon with black texture"],
["A girl with pink hair"],
["A boy playing guitar"],
["A dog wearing a hat"],
["A boy playing basketball"],
# [""],
# [""],
# [""],
],
inputs=[prompt], # 将选中的示例填入 prompt 文本框
label="Example Prompts"
)
btn_text2detailed = gr.Button("Refine to detailed prompt")
detailed_prompt = gr.Textbox(value="", label="Detailed Prompt", placeholder="detailed prompt will be generated here base on your input prompt. You can also edit this prompt", lines=4, interactive=True)
btn_text2img = gr.Button("Generate Images")
with gr.Column(scale=1):
output_image1 = gr.Image(label="Generated image", interactive=False)
# lrm_radius = gr.Number(value=4.15, label="lrm_radius")
# isomer_radius = gr.Number(value=4.5, label="isomer_radius")
# reconstruction_stage1_steps = gr.Number(value=10, label="reconstruction_stage1_steps")
# reconstruction_stage2_steps = gr.Number(value=50, label="reconstruction_stage2_steps")
btn_gen_mesh = gr.Button("Generate Mesh")
output_video1 = gr.Video(label="Generated Video", interactive=False, loop=True, autoplay=True)
btn_download1 = gr.Button("Download Mesh")
file_output1 = gr.File()
with gr.TabItem('Image-to-3D', id='tab_image_to_3d'):
with gr.Row():
with gr.Column(scale=1):
image = gr.Image(label="Input Image", type="pil")
seed2 = gr.Number(value=10, label="Seed (0 for random)")
btn_img2mesh_preprocess = gr.Button("Preprocess Image")
image_caption = gr.Textbox(value="", label="Image Caption", placeholder="caption will be generated here base on your input image. You can also edit this caption", lines=4, interactive=True)
output_image2 = gr.Image(label="Generated image", interactive=False)
strength1 = gr.Slider(minimum=0, maximum=1.0, step=0.01, value=0.5, label="strength1")
strength2 = gr.Slider(minimum=0, maximum=1.0, step=0.01, value=0.95, label="strength2")
enable_redux = gr.Checkbox(label="enable redux", value=True)
use_controlnet = gr.Checkbox(label="use controlnet", value=True)
btn_img2mesh_main = gr.Button("Generate Mesh")
with gr.Column(scale=1):
# output_mesh2 = gr.Model3D(label="Generated Mesh", interactive=False)
output_image3 = gr.Image(label="gen save image", interactive=False)
output_video2 = gr.Video(label="Generated Video", interactive=False, loop=True, autoplay=True)
btn_download2 = gr.Button("Download Mesh")
file_output2 = gr.File()
# Image2
btn_img2mesh_preprocess.click(fn=image2mesh_preprocess_, inputs=[image, seed2], outputs=[output_image2, image_caption])
btn_img2mesh_main.click(fn=image2mesh_main_, inputs=[output_image2, image_caption, seed2, strength1, strength2, enable_redux, use_controlnet], outputs=[output_image3, output_video2])
btn_download2.click(fn=save_cached_mesh, inputs=[], outputs=file_output2)
# Button Click Events
# Text2
btn_text2detailed.click(fn=text_to_detailed, inputs=[prompt, seed1], outputs=detailed_prompt)
btn_text2img.click(fn=text_to_image, inputs=[detailed_prompt, seed1], outputs=output_image1)
btn_gen_mesh.click(fn=bundle_image_to_mesh, inputs=[output_image1,], outputs=output_video1)
# btn_gen_mesh.click(fn=bundle_image_to_mesh, inputs=[output_image1, lrm_radius, isomer_radius, reconstruction_stage1_steps, reconstruction_stage2_steps], outputs=output_video1)
with gr.Row():
pass
with gr.Row():
gr.Markdown(_CITE_)
# demo.queue(default_concurrency_limit=1)
# demo.launch(server_name="0.0.0.0", server_port=9239)
demo.launch()
if __name__ == "__main__":
main()