# -*- coding: utf-8 -*- """Untitled18.ipynb Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/1_vTVH3hBX8wVXIgrW1T2Q4N1DSkWoXV8 """ import os os.system('pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git" --no-deps xformers trl peft accelerate bitsandbytes pytorch') import gradio as gr # from transformers import TextStreamer from unsloth import FastLanguageModel from google.colab import drive # Ensure necessary packages are installed # Define the parameters for the model max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally! dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+ load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False. # Load the model and tokenizer model, tokenizer = FastLanguageModel.from_pretrained( model_name="lora_model", # YOUR MODEL YOU USED FOR TRAINING max_seq_length=max_seq_length, dtype=dtype, load_in_4bit=load_in_4bit, ) FastLanguageModel.for_inference(model) # Enable native 2x faster inference # Define the Alpaca prompt alpaca_prompt = """ ### Input: {} ### Response: {}""" # Define the function to generate responses def chat_alpaca(message: str, history: list, temperature: float, max_new_tokens: int) -> str: prompt = alpaca_prompt.format(message, "") inputs = tokenizer([prompt], return_tensors="pt").to("cuda") # Define the streamer # text_streamer = TextStreamer(tokenizer) # Generate the response outputs = model.generate(**inputs, max_new_tokens=max_new_tokens, temperature=temperature) response = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] # Return the response return response # Define the response function for the Gradio interface def respond(message, history, system_message, max_new_tokens, temperature, top_p): return chat_alpaca(message, history, temperature, max_new_tokens) # Create the Gradio interface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], ) if __name__ == "__main__": demo.launch(share=True)