import gradio as gr from huggingface_hub import InferenceClient import os os.system('pip install peft transformers bitsandbytes') import spaces from transformers import GemmaTokenizer, AutoModelForCausalLM from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer from threading import Thread HF_TOKEN = os.environ.get("HF_TOKEN", None) """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ # Load the tokenizer and model tokenizer = AutoTokenizer.from_pretrained("LLMproj1/mypersona-llama3-8b") model = AutoModelForCausalLM.from_pretrained("LLMproj1/mypersona-llama3-8b", device_map="auto") terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>") ] @spaces.GPU(duration=120) def chat_mistral7b_v0dot3(message: str, history: list, temperature: float, max_new_tokens: int ) -> str: """ Generate a streaming response using the mistralai/Mistral-7B-Instruct-v0.3 model. Args: message (str): The input message. history (list): The conversation history used by ChatInterface. temperature (float): The temperature for generating the response. max_new_tokens (int): The maximum number of new tokens to generate. Returns: str: The generated response. """ conversation = [] for user, assistant in history: conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( input_ids= input_ids, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, temperature=temperature, eos_token_id=terminators, ) # This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash. if temperature == 0: generate_kwargs['do_sample'] = False t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) #print(outputs) yield "".join(outputs) """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()