|
import gradio as gr |
|
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns, SearchColumns |
|
import pandas as pd |
|
from apscheduler.schedulers.background import BackgroundScheduler |
|
from huggingface_hub import snapshot_download |
|
|
|
from src.about import ( |
|
CITATION_BUTTON_LABEL, |
|
CITATION_BUTTON_TEXT, |
|
EVALUATION_QUEUE_TEXT, |
|
INTRODUCTION_TEXT, |
|
LLM_BENCHMARKS_TEXT, |
|
TITLE, |
|
SUB_TITLE, |
|
EXTERNAL_LINKS, |
|
COMING_SOON_TEXT |
|
) |
|
from src.display.css_html_js import custom_css |
|
from src.display.utils import ( |
|
BENCHMARK_COLS, |
|
COLS, |
|
EVAL_COLS, |
|
EVAL_TYPES, |
|
AutoEvalColumn, |
|
ModelType, |
|
fields, |
|
WeightType, |
|
Precision |
|
) |
|
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN |
|
from src.populate import get_evaluation_queue_df, get_leaderboard_df, get_model_leaderboard_df |
|
from src.submission.submit import add_new_eval |
|
|
|
|
|
def restart_space(): |
|
API.restart_space(repo_id=REPO_ID) |
|
|
|
|
|
try: |
|
print(EVAL_REQUESTS_PATH) |
|
snapshot_download( |
|
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN |
|
) |
|
except Exception: |
|
restart_space() |
|
try: |
|
print(EVAL_RESULTS_PATH) |
|
snapshot_download( |
|
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN |
|
) |
|
except Exception: |
|
restart_space() |
|
|
|
|
|
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) |
|
|
|
( |
|
finished_eval_queue_df, |
|
running_eval_queue_df, |
|
pending_eval_queue_df, |
|
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) |
|
|
|
|
|
def init_leaderboard(dataframe): |
|
if dataframe is None or dataframe.empty: |
|
raise ValueError("Leaderboard DataFrame is empty or None.") |
|
|
|
return Leaderboard( |
|
value=dataframe, |
|
datatype=[c.type for c in fields(AutoEvalColumn)], |
|
select_columns=None, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
search_columns=SearchColumns(primary_column=AutoEvalColumn.model.name, secondary_columns=[], |
|
placeholder="Search by the model name", |
|
label="Searching"), |
|
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden], |
|
filter_columns=None, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
interactive=False, |
|
) |
|
|
|
|
|
|
|
|
|
model_result_path = "./src/results/models_2024-10-08-17:39:21.001582.jsonl" |
|
|
|
|
|
|
|
def overall_leaderboard(dataframe): |
|
if dataframe is None or dataframe.empty: |
|
raise ValueError("Leaderboard DataFrame is empty or None.") |
|
|
|
return Leaderboard( |
|
value=dataframe, |
|
datatype=[c.type for c in fields(AutoEvalColumn)], |
|
select_columns=None, |
|
search_columns=SearchColumns(primary_column=AutoEvalColumn.model.name, secondary_columns=[], |
|
placeholder="Search by the model name", |
|
label="Searching"), |
|
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden], |
|
filter_columns=None, |
|
interactive=False, |
|
) |
|
|
|
|
|
|
|
demo = gr.Blocks(css=custom_css) |
|
with demo: |
|
gr.HTML(TITLE) |
|
gr.HTML(SUB_TITLE) |
|
gr.HTML(EXTERNAL_LINKS) |
|
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.Tabs(elem_classes="tab-buttons") as tabs: |
|
|
|
with gr.TabItem("๐
Overview", elem_id="llm-benchmark-tab-table", id=0): |
|
|
|
DESCRIPTION_TEXT = """ |
|
Total #models: 52 (Last updated: 2024-10-08) |
|
""" |
|
gr.Markdown(DESCRIPTION_TEXT, elem_classes="markdown-text") |
|
|
|
leaderboard = overall_leaderboard( |
|
get_model_leaderboard_df( |
|
model_result_path, |
|
benchmark_cols=[ |
|
|
|
AutoEvalColumn.model.name, |
|
AutoEvalColumn.rank_overall.name, |
|
AutoEvalColumn.rank_math_algebra.name, |
|
AutoEvalColumn.rank_math_geometry.name, |
|
AutoEvalColumn.rank_math_probability.name, |
|
AutoEvalColumn.rank_reason_logical.name, |
|
AutoEvalColumn.rank_reason_social.name, |
|
], |
|
rank_col=[], |
|
) |
|
) |
|
|
|
with gr.TabItem("๐ฏ Overall", elem_id="llm-benchmark-tab-table", id=1): |
|
DESCRIPTION_TEXT = """ |
|
Overall dimension measures the comprehensive performance of LLMs across diverse tasks. |
|
We start with diverse questions from the widely-used [MT-Bench](https://arxiv.org/abs/2306.05685), coving a wide range of domains, including writing, roleplay, extraction, reasoning, math, coding, knowledge I (STEM), and knowledge II (humanities/social science). |
|
|
|
""" |
|
gr.Markdown(DESCRIPTION_TEXT, elem_classes="markdown-text") |
|
|
|
leaderboard = overall_leaderboard( |
|
get_model_leaderboard_df( |
|
model_result_path, |
|
benchmark_cols=[ |
|
AutoEvalColumn.rank_overall.name, |
|
AutoEvalColumn.model.name, |
|
AutoEvalColumn.score_overall.name, |
|
AutoEvalColumn.sd_overall.name, |
|
AutoEvalColumn.license.name, |
|
AutoEvalColumn.organization.name, |
|
AutoEvalColumn.knowledge_cutoff.name, |
|
], |
|
rank_col=[AutoEvalColumn.rank_overall.name], |
|
)) |
|
|
|
with gr.TabItem("๐ข Math", elem_id="math-tab-table", id=2): |
|
DESCRIPTION_TEXT=""" |
|
Algebra, Geometry, and Probability are the current three main math domains in the leaderboard. |
|
To mitigate the potential impact of data contimination, we have carefully selected the datasets from various sources. |
|
We prioritize recent math datasets and focus on college and beyond level math questions. |
|
The current datasets include |
|
[MATH](https://arxiv.org/abs/2103.03874), |
|
[MATH-500](https://github.com/openai/prm800k/tree/main/prm800k/math_splits), |
|
[Omni](https://omni-math.github.io/), |
|
[MathQA](https://arxiv.org/abs/1905.13319), |
|
[MathBench](https://arxiv.org/abs/2405.12209), |
|
[SciBench](https://arxiv.org/abs/2307.10635), and more! |
|
We plan to include more math domains, such as calculus, number theory, and more in the future. |
|
""" |
|
gr.Markdown(DESCRIPTION_TEXT, elem_classes="markdown-text") |
|
|
|
|
|
with gr.TabItem("๐งฎ Algebra", elem_id="algebra_subtab", id=0, elem_classes="subtab"): |
|
leaderboard = overall_leaderboard( |
|
get_model_leaderboard_df( |
|
model_result_path, |
|
benchmark_cols=[ |
|
AutoEvalColumn.rank_math_algebra.name, |
|
AutoEvalColumn.model.name, |
|
AutoEvalColumn.score_math_algebra.name, |
|
AutoEvalColumn.sd_math_algebra.name, |
|
AutoEvalColumn.license.name, |
|
AutoEvalColumn.organization.name, |
|
AutoEvalColumn.knowledge_cutoff.name, |
|
], |
|
rank_col=[AutoEvalColumn.rank_math_algebra.name], |
|
) |
|
) |
|
|
|
with gr.TabItem("๐ Geometry", elem_id="geometry_subtab", id=1, elem_classes="subtab"): |
|
leaderboard = overall_leaderboard( |
|
get_model_leaderboard_df( |
|
model_result_path, |
|
benchmark_cols=[ |
|
AutoEvalColumn.rank_math_geometry.name, |
|
AutoEvalColumn.model.name, |
|
AutoEvalColumn.score_math_geometry.name, |
|
AutoEvalColumn.sd_math_geometry.name, |
|
AutoEvalColumn.license.name, |
|
AutoEvalColumn.organization.name, |
|
AutoEvalColumn.knowledge_cutoff.name, |
|
], |
|
rank_col=[AutoEvalColumn.rank_math_geometry.name], |
|
) |
|
) |
|
|
|
with gr.TabItem("๐ Probability", elem_id="prob_subtab", id=2, elem_classes="subtab"): |
|
leaderboard = overall_leaderboard( |
|
get_model_leaderboard_df( |
|
model_result_path, |
|
benchmark_cols=[ |
|
AutoEvalColumn.rank_math_probability.name, |
|
AutoEvalColumn.model.name, |
|
AutoEvalColumn.score_math_probability.name, |
|
AutoEvalColumn.sd_math_probability.name, |
|
AutoEvalColumn.license.name, |
|
AutoEvalColumn.organization.name, |
|
AutoEvalColumn.knowledge_cutoff.name, |
|
], |
|
rank_col=[AutoEvalColumn.rank_math_probability.name], |
|
) |
|
) |
|
|
|
with gr.TabItem("๐ง Reasoning", elem_id="reasonong-tab-table", id=3): |
|
DESCRIPTION_TEXT = """ |
|
Reasoning is a broad domain for evaluating LLMs, but traditional tasks like commonsense reasoning have become less effective at distinguishing between modern LLMs. |
|
Our current focus is on two challenging types of reasoning: logical reasoning and social reasoning, both of which present more meaningful and sophisticated ways to assess LLM performance. |
|
|
|
For logical reasoning, we collect datasets from |
|
[BigBench Hard (BBH)](https://arxiv.org/abs/2210.09261), |
|
[FOLIO](https://arxiv.org/abs/2209.00840), |
|
[LogiQA2.0](https://github.com/csitfun/LogiQA2.0), |
|
[PrOntoQA](https://arxiv.org/abs/2210.01240), |
|
[ReClor](https://arxiv.org/abs/2002.04326). |
|
|
|
For social reasoning, we collect datasets from |
|
[MMToM-QA](https://arxiv.org/abs/2401.08743), |
|
[BigToM](https://arxiv.org/abs/2306.15448), |
|
[Adv-CSFB](https://arxiv.org/abs/2305.14763), |
|
[SocialIQA](https://arxiv.org/abs/1904.09728), |
|
[NormBank](https://arxiv.org/abs/2305.17008). |
|
|
|
""" |
|
gr.Markdown(DESCRIPTION_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.TabItem("๐งฉ Logical", elem_id="logical_subtab", id=0, elem_classes="subtab"): |
|
leaderboard = overall_leaderboard( |
|
get_model_leaderboard_df( |
|
model_result_path, |
|
benchmark_cols=[ |
|
AutoEvalColumn.rank_reason_logical.name, |
|
AutoEvalColumn.model.name, |
|
AutoEvalColumn.score_reason_logical.name, |
|
AutoEvalColumn.sd_reason_logical.name, |
|
AutoEvalColumn.license.name, |
|
AutoEvalColumn.organization.name, |
|
AutoEvalColumn.knowledge_cutoff.name, |
|
], |
|
rank_col=[AutoEvalColumn.rank_reason_logical.name], |
|
) |
|
) |
|
|
|
with gr.TabItem("๐ฃ๏ธ Social", elem_id="social_subtab", id=1, elem_classes="subtab"): |
|
leaderboard = overall_leaderboard( |
|
get_model_leaderboard_df( |
|
model_result_path, |
|
benchmark_cols=[ |
|
AutoEvalColumn.rank_reason_social.name, |
|
AutoEvalColumn.model.name, |
|
AutoEvalColumn.score_reason_social.name, |
|
AutoEvalColumn.sd_reason_social.name, |
|
AutoEvalColumn.license.name, |
|
AutoEvalColumn.organization.name, |
|
AutoEvalColumn.knowledge_cutoff.name, |
|
], |
|
rank_col=[AutoEvalColumn.rank_reason_social.name], |
|
) |
|
) |
|
|
|
with gr.TabItem("๐ฌ Science", elem_id="science-table", id=4): |
|
CURRENT_TEXT = """ |
|
# Coming soon! |
|
We are working on adding more tasks on scientific domains to the leaderboard. The forthcoming ones are biology, chemistry, and physics. |
|
We have diversely and aggressively collected recent science datasets, including but not limited to |
|
[GPQA](https://arxiv.org/abs/2311.12022), |
|
[JEEBench](https://aclanthology.org/2023.emnlp-main.468/), |
|
[MMLU-Pro](https://arxiv.org/abs/2406.01574), |
|
[OlympiadBench](https://arxiv.org/abs/2402.14008), |
|
[SciBench](https://arxiv.org/abs/2307.10635), |
|
[SciEval](https://arxiv.org/abs/2308.13149). |
|
""" |
|
gr.Markdown(CURRENT_TEXT, elem_classes="markdown-text") |
|
|
|
|
|
with gr.TabItem("</> Coding", elem_id="coding-table", id=5): |
|
CURRENT_TEXT = """ |
|
# Coming soon! |
|
We are working on adding more tasks in coding domains to the leaderboard. |
|
The forthcoming ones focus on Python, Java, and C++, with plans to expand to more languages. |
|
We collect a variety of recent coding datasets, including |
|
[HumanEval](https://huggingface.co/datasets/openai/openai_humaneval), |
|
[MBPP](https://huggingface.co/datasets/google-research-datasets/mbpp), |
|
[HumanEvalFix](https://huggingface.co/datasets/bigcode/humanevalpack), |
|
[newly crawled LeetCode data](https://leetcode.com/problemset/), |
|
filtered code-related queries from [Arena-Hard-Auto](https://github.com/lmarena/arena-hard-auto) and more! |
|
Our efforts also include synthesizing new code-related queries to ensure diversity! |
|
""" |
|
gr.Markdown(CURRENT_TEXT, elem_classes="markdown-text") |
|
|
|
|
|
|
|
|
|
with gr.TabItem("๐ About", elem_id="llm-benchmark-tab-table", id=6): |
|
ABOUT_TEXT = """ |
|
""" |
|
gr.Markdown(ABOUT_TEXT, elem_classes="markdown-text") |
|
|
|
|
|
''' |
|
with gr.TabItem("๐ Submit here! ", elem_id="llm-benchmark-tab-table", id=3): |
|
with gr.Column(): |
|
with gr.Row(): |
|
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.Column(): |
|
with gr.Accordion( |
|
f"โ
Finished Evaluations ({len(finished_eval_queue_df)})", |
|
open=False, |
|
): |
|
with gr.Row(): |
|
finished_eval_table = gr.components.Dataframe( |
|
value=finished_eval_queue_df, |
|
headers=EVAL_COLS, |
|
datatype=EVAL_TYPES, |
|
row_count=5, |
|
) |
|
with gr.Accordion( |
|
f"๐ Running Evaluation Queue ({len(running_eval_queue_df)})", |
|
open=False, |
|
): |
|
with gr.Row(): |
|
running_eval_table = gr.components.Dataframe( |
|
value=running_eval_queue_df, |
|
headers=EVAL_COLS, |
|
datatype=EVAL_TYPES, |
|
row_count=5, |
|
) |
|
|
|
with gr.Accordion( |
|
f"โณ Pending Evaluation Queue ({len(pending_eval_queue_df)})", |
|
open=False, |
|
): |
|
with gr.Row(): |
|
pending_eval_table = gr.components.Dataframe( |
|
value=pending_eval_queue_df, |
|
headers=EVAL_COLS, |
|
datatype=EVAL_TYPES, |
|
row_count=5, |
|
) |
|
with gr.Row(): |
|
gr.Markdown("# โ๏ธโจ Submit your model here!", elem_classes="markdown-text") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
model_name_textbox = gr.Textbox(label="Model name") |
|
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main") |
|
model_type = gr.Dropdown( |
|
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown], |
|
label="Model type", |
|
multiselect=False, |
|
value=None, |
|
interactive=True, |
|
) |
|
|
|
with gr.Column(): |
|
precision = gr.Dropdown( |
|
choices=[i.value.name for i in Precision if i != Precision.Unknown], |
|
label="Precision", |
|
multiselect=False, |
|
value="float16", |
|
interactive=True, |
|
) |
|
weight_type = gr.Dropdown( |
|
choices=[i.value.name for i in WeightType], |
|
label="Weights type", |
|
multiselect=False, |
|
value="Original", |
|
interactive=True, |
|
) |
|
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)") |
|
|
|
submit_button = gr.Button("Submit Eval") |
|
submission_result = gr.Markdown() |
|
submit_button.click( |
|
add_new_eval, |
|
[ |
|
model_name_textbox, |
|
base_model_name_textbox, |
|
revision_name_textbox, |
|
precision, |
|
weight_type, |
|
model_type, |
|
], |
|
submission_result, |
|
) |
|
''' |
|
|
|
with gr.Row(): |
|
with gr.Accordion("๐ Citation", open=False): |
|
citation_button = gr.Textbox( |
|
value=CITATION_BUTTON_TEXT, |
|
label=CITATION_BUTTON_LABEL, |
|
lines=20, |
|
elem_id="citation-button", |
|
show_copy_button=True, |
|
) |
|
|
|
scheduler = BackgroundScheduler() |
|
scheduler.add_job(restart_space, "interval", seconds=1800) |
|
scheduler.start() |
|
demo.queue(default_concurrency_limit=40).launch() |