import torch from new_impl.cv.elasticdnn.api.model import ElasticDNN_OfflineVQAFMModel, ElasticDNN_OfflineVQAMDModel from new_impl.cv.elasticdnn.api.algs.fm_lora import ElasticDNN_FMLoRAAlg from new_impl.cv.elasticdnn.model.base import ElasticDNNUtil from new_impl.cv.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util from blip import FMLoRA_blip_Util from new_impl.cv.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util from utils.dl.common.model import LayerActivation, get_module, get_parameter, set_module from utils.common.exp import save_models_dict_for_init, get_res_save_dir from data import build_scenario from utils.common.log import logger import torch.nn.functional as F import sys class ElasticDNN_blip_OfflineVQAFMModel(ElasticDNN_OfflineVQAFMModel): def generate_md_by_reducing_width(self, reducing_width_ratio, samples: torch.Tensor): # return FM_to_MD_ViT_Util().init_md_from_fm_by_reducing_width_with_perf_test(self.models_dict['main'], # reducing_width_ratio, samples) raise NotImplementedError def get_feature_hook(self) -> LayerActivation: return LayerActivation(get_module(self.models_dict['main'], 'cls'), True, self.device) def get_elastic_dnn_util(self) -> ElasticDNNUtil raise NotImplementedError def forward_to_get_task_loss(self, x, y, *args, **kwargs): self.to_train_mode() # print(x['input_ids'].size(), x['pixel_values'].size(), ) o = self.infer(x) #o = self.models_dict['main'](**y) # print(o.size(), y.size(), o, y) #return F.cross_entropy(o,y) #return F.binary_cross_entropy_with_logits(o, y) * y.shape[1] return F.binary_cross_entropy_with_logits(o, y) * y.shape[1] def get_lora_util(self) -> FMLoRA_Util: return FMLoRA_git_Util() def get_task_head_params(self): head = get_module(self.models_dict['main'], 'cls') params_name = {k for k, v in head.named_parameters()} logger.info(f'task head params: {params_name}') return list(head.parameters()) class ElasticDNN_blip_OfflineVQAMDModel(ElasticDNN_OfflineVQAMDModel): def get_feature_hook(self) -> LayerActivation: return LayerActivation(get_module(self.models_dict['main'], 'cls'), True, self.device) def forward_to_get_task_loss(self, x, y, *args, **kwargs): self.to_train_mode() o = self.infer(x) return nn.functional.binary_cross_entropy_with_logits(o, y) * y.shape[1] if __name__ == '__main__': from utils.dl.common.env import set_random_seed set_random_seed(1) scenario = build_scenario( source_datasets_name=['VQA_split1'], target_datasets_order=['VQA_split1_c'] * 1, # TODO da_mode='close_set', data_dirs={ 'VQA_split1': '/data/zql/datasets/vqav2', 'VQA_split1_c': '/data/zql/datasets/vqav2' }, ) # 2. init model torch.cuda.set_device(1) device = 'cuda' from transformers import BlipForQuestionAnswering from git import git model = git(scenario.num_classes) fm_models_dict_path = save_models_dict_for_init({ 'main': model }, __file__, 'fm_git') fm_model = ElasticDNN_blip_OfflineVQAFMModel('fm', fm_models_dict_path, device) # 3. init alg models = { 'fm': fm_model } fm_lora_alg = ElasticDNN_FMLoRAAlg(models, get_res_save_dir(__file__, sys.argv[0])) sample_dataset = list(scenario.get_offline_datasets().values())[0]['train'] sample = sample_dataset[0][0] for k, v in sample.items(): sample[k] = v.unsqueeze(0) # 4. run alg from utils.dl.common.lr_scheduler import get_linear_schedule_with_warmup fm_lora_alg.run(scenario, hyps={ 'launch_tbboard': False, 'samples_size': sample, 'ab_r':8 , 'train_batch_size': 64, 'val_batch_size': 512, 'num_workers': 16, 'optimizer': 'AdamW', 'optimizer_args': {'lr': 1e-4, 'betas': [0.9, 0.999]}, 'scheduler': 'LambdaLR', 'scheduler_args': {'lr_lambda': get_linear_schedule_with_warmup(10000, 310000)}, 'num_iters': 320000, 'val_freq': 400, # 'fm_lora_ckpt_path': 'experiments/elasticdnn/vit_b_16/offline/fm_lora/cls/results/cls.py/20230607/999995-234355-TokenClsial/models/fm_best.pt' })