import sys from utils.dl.common.env import set_random_seed set_random_seed(1) from typing import List from data.dataloader import build_dataloader from data import Scenario from methods.elasticdnn.api.online_model_v2 import ElasticDNN_OnlineModel import torch import sys from torch import nn from methods.elasticdnn.api.model import ElasticDNN_OfflineSegFMModel, ElasticDNN_OfflineSegMDModel from methods.elasticdnn.api.algs.md_pretraining_wo_fbs import ElasticDNN_MDPretrainingWoFBSAlg from methods.elasticdnn.model.base import ElasticDNNUtil from methods.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util from methods.elasticdnn.pipeline.offline.fm_to_md.vit import FM_to_MD_ViT_Util from methods.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util from methods.elasticdnn.pipeline.offline.fm_lora.vit import FMLoRA_ViT_Util from methods.elasticdnn.model.vit import ElasticViTUtil from utils.common.file import ensure_dir from utils.dl.common.model import LayerActivation, get_module, get_parameter from utils.common.exp import save_models_dict_for_init, get_res_save_dir from data import build_scenario from utils.dl.common.loss import CrossEntropyLossSoft import torch.nn.functional as F from utils.dl.common.env import create_tbwriter import os import shutil from utils.common.log import logger from utils.common.data_record import write_json # from methods.shot.shot import OnlineShotModel from methods.feat_align.main import OnlineFeatAlignModel, FeatAlignAlg import tqdm from methods.feat_align.mmd import mmd_rbf from methods.base.alg import BaseAlg from methods.base.model import BaseModel from copy import deepcopy import time def baseline_da(app_name: str, scenario: Scenario, da_alg: BaseAlg, da_alg_hyp: dict, da_model: BaseModel, device, __entry_file__, tag=None): # involve_fm = settings['involve_fm'] task_name = app_name # online_model = elasticfm_model log_dir = get_res_save_dir(__entry_file__, tag=tag) tb_writer = create_tbwriter(os.path.join(log_dir, 'tb_log'), False) res = [] global_avg_after_acc = 0. global_iter = 0 for domain_index, _ in enumerate(scenario.target_domains_order): cur_target_domain_name = scenario.target_domains_order[scenario.cur_domain_index] if cur_target_domain_name in da_alg_hyp: da_alg_hyp = da_alg_hyp[cur_target_domain_name] logger.info(f'use dataset-specific da_alg_hyp') da_metrics, after_da_model = da_alg( {'main': da_model}, os.path.join(log_dir, f'{task_name}/{domain_index}') ).run(scenario, da_alg_hyp) # os.remove(tmp_sd_path) # 前面在当前域上训练,在这里压缩调优? # print(da_model.models_dict['main']) # 进行压缩 reducing_width_ratio = 8 samples = torch.rand(1, 3, 224, 224).to(device) trained_fm_model = deepcopy(da_model.models_dict['main']) fm_da_model = deepcopy(da_model) # 保存大模型 lora_util = FMLoRA_ViT_Util() lora_absorbed_fm_model = lora_util.absorb_lora_and_recover_net_structure(trained_fm_model, samples) compressed_fm_model = FM_to_MD_ViT_Util().init_md_from_fm_by_reducing_width_with_perf_test(lora_absorbed_fm_model, reducing_width_ratio, samples) da_model.models_dict['main'] = compressed_fm_model # 进行调优?之前那个da_metrics是FM的结果吧,调优也能得到一个精度结果换成这个? datasets_for_training = scenario.get_online_cur_domain_datasets_for_training() train_dataset = datasets_for_training[cur_target_domain_name]['train'] val_dataset = datasets_for_training[cur_target_domain_name]['val'] datasets_for_inference = scenario.get_online_cur_domain_datasets_for_inference() test_dataset = datasets_for_inference train_loader = iter(build_dataloader(train_dataset, da_alg_hyp['train_batch_size'], da_alg_hyp['num_workers'], True, None)) test_loader = build_dataloader(test_dataset, da_alg_hyp['val_batch_size'], da_alg_hyp['num_workers'], False, False) for p in compressed_fm_model.parameters(): p.requires_grad = True da_model.to_train_mode() # 'distill_optimizer': 'AdamW', # 'distill_optimizer_args': {'lr': 1e-4, 'betas': [0.9, 0.999], 'weight_decay': 0.01}, optimizer = torch.optim.__dict__['AdamW']([ {'params': da_model.models_dict['main'].parameters(), **{'lr': 1e-4, 'betas': [0.9, 0.999], 'weight_decay': 0.01}} ]) if da_alg_hyp['scheduler'] != '': scheduler = torch.optim.lr_scheduler.__dict__[da_alg_hyp['scheduler']](optimizer, **da_alg_hyp['scheduler_args']) else: scheduler = None pbar = tqdm.tqdm(range(da_alg_hyp['num_iters']), dynamic_ncols=True) accs = [] total_train_time = 0. cur_acc = 0. for iter_index in pbar: cur_start_time = time.time() da_model.to_train_mode() fm_da_model.to_eval_mode() x, y = next(train_loader) if isinstance(x, dict): for k, v in x.items(): if isinstance(v, torch.Tensor): x[k] = v.to(device) y = y.to(device) else: x, y = x.to(device), y.to(device) with torch.no_grad(): fm_output = fm_da_model.infer(x) md_output = da_model.infer(x) distill_criterion = CrossEntropyLossSoft() total_loss = distill_criterion(md_output, fm_output) optimizer.zero_grad() total_loss.backward() optimizer.step() if scheduler is not None: scheduler.step() total_train_time += time.time() - cur_start_time if (iter_index + 1) % da_alg_hyp['val_freq'] == 0: from data import split_dataset cur_md = da_model.models_dict['main'] md_for_test = deepcopy(da_model.models_dict['main']) da_model.models_dict['main'] = md_for_test cur_test_batch_dataset = split_dataset(test_dataset, da_alg_hyp['val_batch_size'], iter_index + 1)[0] cur_test_batch_dataloader = build_dataloader(cur_test_batch_dataset, da_alg_hyp['train_batch_size'], da_alg_hyp['num_workers'], False, False) da_model.to_eval_mode() cur_acc = da_model.get_accuracy(cur_test_batch_dataloader) accs += [{ 'iter': iter_index + 1, 'acc': cur_acc }] pbar.set_description(f'loss: {total_loss:.6f}, cur_acc: {cur_acc:.4f}') time_usage = total_train_time da_metrics = { 'accs': accs, 'time': time_usage } da_model = fm_da_model # 恢复大模型 # 蒸馏结束 if domain_index > 0: shutil.rmtree(os.path.join(log_dir, f'{task_name}/{domain_index}/backup_codes')) accs = da_metrics['accs'] before_acc = accs[0]['acc'] after_acc = accs[-1]['acc'] tb_writer.add_scalars(f'accs/{task_name}', dict(before=before_acc, after=after_acc), domain_index) tb_writer.add_scalar(f'times/{task_name}', da_metrics['time'], domain_index) for _acc in accs: tb_writer.add_scalar('total_acc', _acc['acc'], _acc['iter'] + global_iter) global_iter += _acc['iter'] + 1 scenario.next_domain() logger.info(f"task: {task_name}, domain {domain_index}, acc: {before_acc:.4f} -> " f"{after_acc:.4f} ({da_metrics['time']:.2f}s)") global_avg_after_acc += after_acc cur_res = da_metrics res += [cur_res] write_json(os.path.join(log_dir, 'res.json'), res, backup=False) global_avg_after_acc /= (domain_index + 1) logger.info(f'-----> final metric: {global_avg_after_acc:.4f}') write_json(os.path.join(log_dir, f'res_{global_avg_after_acc:.4f}.json'), res, backup=False)