#!/usr/bin/env python # -*- encoding: utf-8 -*- # Copyright (c) Megvii Inc. All rights reserved. import torch import torch.nn as nn from .network_blocks import BaseConv class YOLOFPN(nn.Module): """ YOLOFPN module. Darknet 53 is the default backbone of this model. """ def __init__( self ): super().__init__() # self.backbone = Darknet(depth) # self.in_features = in_features # out 1 self.out1_cbl = self._make_cbl(512, 256, 1) self.out1 = self._make_embedding([256, 512], 512 + 256) # out 2 self.out2_cbl = self._make_cbl(256, 128, 1) self.out2 = self._make_embedding([128, 256], 256 + 128) # upsample self.upsample = nn.Upsample(scale_factor=2, mode="nearest") def _make_cbl(self, _in, _out, ks): return BaseConv(_in, _out, ks, stride=1, act="lrelu") def _make_embedding(self, filters_list, in_filters): m = nn.Sequential( *[ self._make_cbl(in_filters, filters_list[0], 1), self._make_cbl(filters_list[0], filters_list[1], 3), self._make_cbl(filters_list[1], filters_list[0], 1), self._make_cbl(filters_list[0], filters_list[1], 3), self._make_cbl(filters_list[1], filters_list[0], 1), ] ) return m def load_pretrained_model(self, filename="./weights/darknet53.mix.pth"): with open(filename, "rb") as f: state_dict = torch.load(f, map_location="cpu") print("loading pretrained weights...") self.backbone.load_state_dict(state_dict) def forward(self, backbone_out_features): """ Args: inputs (Tensor): input image. Returns: Tuple[Tensor]: FPN output features.. """ # backbone # out_features = self.backbone(inputs) out_features = backbone_out_features x2, x1, x0 = out_features # yolo branch 1 x1_in = self.out1_cbl(x0) x1_in = self.upsample(x1_in) x1_in = torch.cat([x1_in, x1], 1) out_dark4 = self.out1(x1_in) # yolo branch 2 x2_in = self.out2_cbl(out_dark4) x2_in = self.upsample(x2_in) x2_in = torch.cat([x2_in, x2], 1) out_dark3 = self.out2(x2_in) outputs = (out_dark3, out_dark4, x0) return outputs