#!/usr/bin/env python3 # -*- coding:utf-8 -*- # Copyright (c) Megvii, Inc. and its affiliates. import contextlib import io import itertools import json import tempfile import time from loguru import logger from tabulate import tabulate from tqdm import tqdm import numpy as np import torch # from core.common.dnn.detection.yolox.yolox.data.datasets import COCO_CLASSES from .utils import ( gather, is_main_process, postprocess, synchronize, time_synchronized, xyxy2xywh ) # from core.common.dnn.detection.yolox.yolox.layers import COCOeval_opt as COCOeval def per_class_AR_table(coco_eval, class_names, headers=["class", "AR"], colums=6): per_class_AR = {} recalls = coco_eval.eval["recall"] # dimension of recalls: [TxKxAxM] # recall has dims (iou, cls, area range, max dets) assert len(class_names) == recalls.shape[1] for idx, name in enumerate(class_names): recall = recalls[:, idx, 0, -1] recall = recall[recall > -1] ar = np.mean(recall) if recall.size else float("nan") per_class_AR[name] = float(ar * 100) num_cols = min(colums, len(per_class_AR) * len(headers)) result_pair = [x for pair in per_class_AR.items() for x in pair] row_pair = itertools.zip_longest(*[result_pair[i::num_cols] for i in range(num_cols)]) table_headers = headers * (num_cols // len(headers)) table = tabulate( row_pair, tablefmt="pipe", floatfmt=".3f", headers=table_headers, numalign="left", ) return table def per_class_AP_table(coco_eval, class_names, headers=["class", "AP"], colums=6): per_class_AP = {} precisions = coco_eval.eval["precision"] # dimension of precisions: [TxRxKxAxM] # precision has dims (iou, recall, cls, area range, max dets) assert len(class_names) == precisions.shape[2] for idx, name in enumerate(class_names): # area range index 0: all area ranges # max dets index -1: typically 100 per image precision = precisions[:, :, idx, 0, -1] precision = precision[precision > -1] ap = np.mean(precision) if precision.size else float("nan") per_class_AP[name] = float(ap * 100) num_cols = min(colums, len(per_class_AP) * len(headers)) result_pair = [x for pair in per_class_AP.items() for x in pair] row_pair = itertools.zip_longest(*[result_pair[i::num_cols] for i in range(num_cols)]) table_headers = headers * (num_cols // len(headers)) table = tabulate( row_pair, tablefmt="pipe", floatfmt=".3f", headers=table_headers, numalign="left", ) return table class COCOEvaluator: """ COCO AP Evaluation class. All the data in the val2017 dataset are processed and evaluated by COCO API. """ def __init__( self, dataloader, img_size: int, confthre: float, nmsthre: float, num_classes: int, testdev: bool = False, per_class_AP: bool = False, per_class_AR: bool = False, ): """ Args: dataloader (Dataloader): evaluate dataloader. img_size: image size after preprocess. images are resized to squares whose shape is (img_size, img_size). confthre: confidence threshold ranging from 0 to 1, which is defined in the config file. nmsthre: IoU threshold of non-max supression ranging from 0 to 1. per_class_AP: Show per class AP during evalution or not. Default to False. per_class_AR: Show per class AR during evalution or not. Default to False. """ self.dataloader = dataloader self.img_size = img_size self.confthre = confthre self.nmsthre = nmsthre self.num_classes = num_classes self.testdev = testdev self.per_class_AP = per_class_AP self.per_class_AR = per_class_AR def evaluate( self, model, distributed=False, half=False, trt_file=None, decoder=None, test_size=None, ): """ COCO average precision (AP) Evaluation. Iterate inference on the test dataset and the results are evaluated by COCO API. NOTE: This function will change training mode to False, please save states if needed. Args: model : model to evaluate. Returns: ap50_95 (float) : COCO AP of IoU=50:95 ap50 (float) : COCO AP of IoU=50 summary (sr): summary info of evaluation. """ # TODO half to amp_test tensor_type = torch.cuda.HalfTensor if half else torch.cuda.FloatTensor model = model.eval() if half: model = model.half() ids = [] data_list = [] progress_bar = iter if is_main_process() else iter inference_time = 0 nms_time = 0 n_samples = max(len(self.dataloader) - 1, 1) if trt_file is not None: from torch2trt import TRTModule model_trt = TRTModule() model_trt.load_state_dict(torch.load(trt_file)) x = torch.ones(1, 3, test_size[0], test_size[1]).cuda() model(x) model = model_trt import tqdm for cur_iter, (imgs, _, info_imgs, ids) in tqdm.tqdm(enumerate( progress_bar(self.dataloader) ), dynamic_ncols=True, leave=False, total=len(self.dataloader)): with torch.no_grad(): imgs = imgs.type(tensor_type) # skip the the last iters since batchsize might be not enough for batch inference is_time_record = cur_iter < len(self.dataloader) - 1 if is_time_record: start = time.time() outputs = model(imgs) if decoder is not None: outputs = decoder(outputs, dtype=outputs.type()) if is_time_record: infer_end = time_synchronized() inference_time += infer_end - start outputs = postprocess( outputs, self.num_classes, self.confthre, self.nmsthre ) if is_time_record: nms_end = time_synchronized() nms_time += nms_end - infer_end data_list.extend(self.convert_to_coco_format(outputs, info_imgs, ids, imgs)) statistics = torch.cuda.FloatTensor([inference_time, nms_time, n_samples]) if distributed: data_list = gather(data_list, dst=0) data_list = list(itertools.chain(*data_list)) torch.distributed.reduce(statistics, dst=0) eval_results = self.evaluate_prediction(data_list, statistics) synchronize() return eval_results def convert_to_coco_format(self, outputs, info_imgs, ids, input_imgs=None): data_list = [] img_i = 0 for (output, img_h, img_w, img_id, img) in zip( outputs, info_imgs[0], info_imgs[1], ids, input_imgs ): if output is None: continue output = output.cpu() bboxes = output[:, 0:4] # preprocessing: resize scale = min( self.img_size[0] / float(img_h), self.img_size[1] / float(img_w) ) bboxes /= scale bboxes = xyxy2xywh(bboxes) cls = output[:, 6] scores = output[:, 4] * output[:, 5] for ind in range(bboxes.shape[0]): # print(self.dataloader.dataset.class_ids, cls[ind]) # implemented by queyu, 2022/08/08 _d = self.dataloader.dataset if _d.__class__.__name__ == 'MergedDataset': # _d = _d.datasets[0] raise NotImplementedError from data import ABDataset if _d.__class__.__name__ == '_AugWrapperForDataset': _d = _d.raw_dataset if isinstance(_d, ABDataset): _d = _d.dataset if _d.__class__.__name__ == '_SplitDataset': raise NotImplementedError _d = _d.underlying_dataset class_ids = _d.class_ids if int(cls[ind]) >= len(class_ids): raise RuntimeError label = self.dataloader.dataset.class_ids[-1] else: label = class_ids[int(cls[ind])] pred_data = { "image_id": int(img_id), "category_id": label, "bbox": bboxes[ind].numpy().tolist(), "score": scores[ind].numpy().item(), "segmentation": [], } # COCO json format data_list.append(pred_data) # TODO: debug # img = input_imgs[ind] # from torchvision.transforms import ToTensor, ToPILImage # from torchvision.utils import make_grid # from PIL import Image, ImageDraw # import matplotlib.pyplot as plt # import numpy as np # def draw_bbox(img, bbox, label, f): # # if f: # # img = np.uint8(img.permute(1, 2, 0)) # # img = Image.fromarray(img) # img = ToPILImage()(img) # draw = ImageDraw.Draw(img) # draw.rectangle(bbox, outline=(255, 0, 0), width=6) # draw.text((bbox[0], bbox[1]), label) # return ToTensor()(np.array(img)) # def xywh2xyxy(bbox): # x, y, w, h = bbox # x1, y1 = x, y # x2, y2 = x + w, y + h # return x1, y1, x2, y2 # img = draw_bbox(img, xywh2xyxy(bboxes[ind].numpy()), str(label), True) # img = make_grid([img], 1, normalize=True) # plt.axis('off') # img = img.permute(1, 2, 0).numpy() # plt.imshow(img) # plt.savefig(f'./tmp-coco-eval-{ind}.png') # plt.clf() # img_i += 1 # exit(0) return data_list def evaluate_prediction(self, data_dict, statistics): if not is_main_process(): return 0, 0, None # logger.info("Evaluate in main process...") annType = ["segm", "bbox", "keypoints"] inference_time = statistics[0].item() nms_time = statistics[1].item() n_samples = statistics[2].item() a_infer_time = 1000 * inference_time / (n_samples * self.dataloader.batch_size) a_nms_time = 1000 * nms_time / (n_samples * self.dataloader.batch_size) time_info = ", ".join( [ "Average {} time: {:.2f} ms".format(k, v) for k, v in zip( ["forward", "NMS", "inference"], [a_infer_time, a_nms_time, (a_infer_time + a_nms_time)], ) ] ) info = time_info + "\n" # Evaluate the Dt (detection) json comparing with the ground truth if len(data_dict) > 0: # cocoGt = self.dataloader.dataset.coco _d = self.dataloader.dataset if _d.__class__.__name__ == 'MergedDataset': # _d = _d.datasets[0] raise NotImplementedError from data import ABDataset if _d.__class__.__name__ == '_AugWrapperForDataset': _d = _d.raw_dataset if isinstance(_d, ABDataset): _d = _d.dataset if _d.__class__.__name__ == '_SplitDataset': raise NotImplementedError _d = _d.underlying_dataset cocoGt = _d.coco # implemented by queyu, 2022/08/08 # make cocoGt's label += y_offset # cocoGt: COCOAPI # TODO: since pycocotools can't process dict in py36, write data to json file. if self.testdev: json.dump(data_dict, open("./yolox_testdev_2017.json", "w")) cocoDt = cocoGt.loadRes("./yolox_testdev_2017.json") else: _, tmp = tempfile.mkstemp() json.dump(data_dict, open(tmp, "w")) cocoDt = cocoGt.loadRes(tmp) # try: # from core.common.dnn.detection.yolox.yolox.layers import COCOeval_opt as COCOeval # except ImportError: from pycocotools.cocoeval import COCOeval logger.warning("Use standard COCOeval.") cocoEval = COCOeval(cocoGt, cocoDt, annType[1]) cocoEval.evaluate() cocoEval.accumulate() redirect_string = io.StringIO() with contextlib.redirect_stdout(redirect_string): cocoEval.summarize() info += redirect_string.getvalue() cat_ids = list(cocoGt.cats.keys()) cat_names = [cocoGt.cats[catId]['name'] for catId in sorted(cat_ids)] if self.per_class_AP: AP_table = per_class_AP_table(cocoEval, class_names=cat_names) info += "per class AP:\n" + AP_table + "\n" if self.per_class_AR: AR_table = per_class_AR_table(cocoEval, class_names=cat_names) info += "per class AR:\n" + AR_table + "\n" return cocoEval.stats[0], cocoEval.stats[1], info else: return 0, 0, info