from ..ab_dataset import ABDataset from ..dataset_split import train_val_split, train_val_test_split from typing import Dict, List, Optional from torchvision.transforms import Compose from .yolox_data_util.api import get_default_yolox_coco_dataset, remap_dataset, ensure_index_start_from_1_and_successive, coco_train_val_test_split import os from ..registery import dataset_register categories = [{"supercategory": "none", "id": 0, "name": "boat"}, {"supercategory": "none", "id": 1, "name": "person"}, {"supercategory": "none", "id": 2, "name": "car"}, {"supercategory": "none", "id": 3, "name": "bus"}, {"supercategory": "none", "id": 4, "name": "horse"}, {"supercategory": "none", "id": 5, "name": "train"}, {"supercategory": "none", "id": 6, "name": "chair"}, {"supercategory": "none", "id": 7, "name": "aeroplane"}, {"supercategory": "none", "id": 8, "name": "dog"}, {"supercategory": "none", "id": 9, "name": "pottedplant"}, {"supercategory": "none", "id": 10, "name": "motorbike"}, {"supercategory": "none", "id": 11, "name": "cat"}, {"supercategory": "none", "id": 12, "name": "bicycle"}, {"supercategory": "none", "id": 13, "name": "bird"}, {"supercategory": "none", "id": 14, "name": "bottle"}, {"supercategory": "none", "id": 15, "name": "sofa"}, {"supercategory": "none", "id": 16, "name": "diningtable"}, {"supercategory": "none", "id": 17, "name": "tvmonitor"}, {"supercategory": "none", "id": 18, "name": "sheep"}, {"supercategory": "none", "id": 19, "name": "cow"}] classes = [i['name'] for i in categories] @dataset_register( name='VOC2012', classes=classes, task_type='Object Detection', object_type='Generic Object', class_aliases=[], shift_type=None ) class VOC2012(ABDataset): def create_dataset(self, root_dir: str, split: str, transform: Optional[Compose], classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]): assert transform is None, \ 'The implementation of object detection datasets is based on YOLOX (https://github.com/Megvii-BaseDetection/YOLOX) ' \ 'where normal `torchvision.transforms` is not supported. You can re-implement the dataset to override default data aug.' ann_json_file_path = os.path.join(root_dir, 'coco_ann.json') assert os.path.exists(ann_json_file_path), \ f'Please put the COCO annotation JSON file in root_dir: `{root_dir}/coco_ann.json`.' ann_json_file_path = ensure_index_start_from_1_and_successive(ann_json_file_path) ann_json_file_path = remap_dataset(ann_json_file_path, ignore_classes, idx_map) ann_json_file_path = coco_train_val_test_split(ann_json_file_path, split) dataset = get_default_yolox_coco_dataset(root_dir, ann_json_file_path, train=(split == 'train')) # dataset = train_val_test_split(dataset, split) return dataset