from ..data_aug import imagenet_like_image_train_aug, imagenet_like_image_test_aug from ..ab_dataset import ABDataset from ..dataset_split import train_val_split, train_val_test_split from torchvision.datasets import ImageFolder import os from typing import Dict, List, Optional from torchvision.transforms import Compose from ..registery import dataset_register # with open(os.path.join(os.path.dirname(__file__), 'fruits360_classes.txt'), 'r') as f: # classes = [line.split(':')[0].strip('"') for line in f.readlines()] # assert len(classes) == 131 @dataset_register( name='SuperviselyPersonCls', classes=['seg_person'], task_type='Image Classification', object_type='Person', class_aliases=[], shift_type=None ) class SuperviselyPersonCls(ABDataset): def create_dataset(self, root_dir: str, split: str, transform: Optional[Compose], classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]): if transform is None: transform = imagenet_like_image_train_aug() if split == 'train' else imagenet_like_image_test_aug() self.transform = transform #root_dir = os.path.join(root_dir, 'train' if split != 'test' else 'val') dataset = ImageFolder(root_dir, transform=transform) if len(ignore_classes) > 0: ignore_classes_idx = [classes.index(c) for c in ignore_classes] dataset.samples = [s for s in dataset.samples if s[1] not in ignore_classes_idx] if idx_map is not None: dataset.samples = [(s[0], idx_map[s[1]]) if s[1] in idx_map.keys() else s for s in dataset.samples] dataset = train_val_test_split(dataset, split) return dataset