from ..data_aug import cityscapes_like_image_train_aug, cityscapes_like_image_test_aug, cityscapes_like_label_aug from torchvision.datasets import Cityscapes as RawCityscapes from ..ab_dataset import ABDataset from ..dataset_split import train_val_test_split import numpy as np from typing import Dict, List, Optional from torchvision.transforms import Compose, Lambda import os from ..registery import dataset_register @dataset_register( name='Cityscapes', classes=[ 'road', 'sidewalk', 'building', 'wall', 'fence', 'pole', 'light', 'sign', 'vegetation', 'terrain', 'sky', 'people', # person 'rider', 'car', 'truck', 'bus', 'train', 'motocycle', 'bicycle' ], task_type='Semantic Segmentation', object_type='Autonomous Driving', # class_aliases=[['automobile', 'car']], class_aliases=[], shift_type=None ) class Cityscapes(ABDataset): def create_dataset(self, root_dir: str, split: str, transform: Optional[Compose], classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]): if transform is None: x_transform = cityscapes_like_image_train_aug() if split == 'train' else cityscapes_like_image_test_aug() y_transform = cityscapes_like_label_aug() self.transform = x_transform else: x_transform = transform y_transform = cityscapes_like_label_aug() # images_path, labels_path = [], [] # for p in os.listdir(os.path.join(root_dir, 'images')): # p = os.path.join(root_dir, 'images', p) # if not p.endswith('png'): # continue # images_path += [p] # labels_path += [p.replace('images', 'labels_gt')] ignore_label = 255 raw_idx_map_in_y_transform = {-1: ignore_label, 0: ignore_label, 1: ignore_label, 2: ignore_label, 3: ignore_label, 4: ignore_label, 5: ignore_label, 6: ignore_label, 7: 0, 8: 1, 9: ignore_label, 10: ignore_label, 11: 2, 12: 3, 13: 4, 14: ignore_label, 15: ignore_label, 16: ignore_label, 17: 5, 18: ignore_label, 19: 6, 20: 7, 21: 8, 22: 9, 23: 10, 24: 11, 25: 12, 26: 13, 27: 14, 28: 15, 29: ignore_label, 30: ignore_label, 31: 16, 32: 17, 33: 18} idx_map_in_y_transform = {i: i for i in range(len(classes))} idx_map_in_y_transform[255] = 255 # dataset.targets = np.asarray(dataset.targets) if len(ignore_classes) > 0: for ignore_class in ignore_classes: # dataset.data = dataset.data[dataset.targets != classes.index(ignore_class)] # dataset.targets = dataset.targets[dataset.targets != classes.index(ignore_class)] idx_map_in_y_transform[ignore_class] = 255 if idx_map is not None: # note: the code below seems correct but has bug! # for old_idx, new_idx in idx_map.items(): # dataset.targets[dataset.targets == old_idx] = new_idx # for ti, t in enumerate(dataset.targets): # dataset.targets[ti] = idx_map[t] for k, v in idx_map.items(): idx_map_in_y_transform[k] = v # merge idx map final_idx_map_in_y_transform = {} for k1, v1 in raw_idx_map_in_y_transform.items(): final_idx_map_in_y_transform[k1] = idx_map_in_y_transform[v1] idx_map_in_y_transform = final_idx_map_in_y_transform def map_class(x): for k, v in idx_map_in_y_transform.items(): x[x == k] = v return x y_transform = Compose([ *y_transform.transforms, Lambda(lambda x: map_class(x)) ]) dataset = RawCityscapes(root_dir, target_type='semantic', transform=x_transform, target_transform=y_transform) dataset = train_val_test_split(dataset, split) return dataset