from ..data_aug import cityscapes_like_image_train_aug, cityscapes_like_image_test_aug, cityscapes_like_label_aug from .common_dataset import CommonDataset from ..ab_dataset import ABDataset from ..dataset_split import train_val_test_split import numpy as np from typing import Dict, List, Optional from torchvision.transforms import Compose, Lambda import os from ..registery import dataset_register @dataset_register( name='BaiduPerson', classes=[ 'person', 'background' ], task_type='Semantic Segmentation', object_type='Person', # class_aliases=[['automobile', 'car']], class_aliases=[], shift_type=None ) class BaiduPerson(ABDataset): def create_dataset(self, root_dir: str, split: str, transform: Optional[Compose], classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]): if transform is None: x_transform = cityscapes_like_image_train_aug() if split == 'train' else cityscapes_like_image_test_aug() y_transform = cityscapes_like_label_aug() self.transform = x_transform else: x_transform = transform y_transform = cityscapes_like_label_aug() images_path, labels_path = [], [] for p in os.listdir(os.path.join(root_dir, 'images')): images_path += [os.path.join(root_dir, 'images', p)] labels_path += [os.path.join(root_dir, 'profiles', p.split('.')[0] + '-profile.jpg')] idx_map_in_y_transform = {i: i for i in range(len(classes))} # dataset.targets = np.asarray(dataset.targets) if len(ignore_classes) > 0: for ignore_class in ignore_classes: # dataset.data = dataset.data[dataset.targets != classes.index(ignore_class)] # dataset.targets = dataset.targets[dataset.targets != classes.index(ignore_class)] idx_map_in_y_transform[ignore_class] = 255 if idx_map is not None: # note: the code below seems correct but has bug! # for old_idx, new_idx in idx_map.items(): # dataset.targets[dataset.targets == old_idx] = new_idx # for ti, t in enumerate(dataset.targets): # dataset.targets[ti] = idx_map[t] for k, v in idx_map.items(): idx_map_in_y_transform[k] = v def map_class(x): x[x > 1] = 1 # 0: background; 1: person for k, v in idx_map_in_y_transform.items(): x[x == k] = v return x y_transform = Compose([ *y_transform.transforms, Lambda(lambda x: map_class(x)) ]) dataset = CommonDataset(images_path, labels_path, x_transform=x_transform, y_transform=y_transform) dataset = train_val_test_split(dataset, split) return dataset