from ..data_aug import cifar_like_image_train_aug, cifar_like_image_test_aug from ..ab_dataset import ABDataset from ..dataset_split import train_val_split from torchvision.datasets import STL10 as RawSTL10 from typing import Dict, List, Optional from torchvision.transforms import Compose from utils.common.others import HiddenPrints from ..registery import dataset_register @dataset_register( name='STL10', classes=['airplane', 'bird', 'car', 'cat', 'deer', 'dog', 'horse', 'monkey', 'ship', 'truck'], task_type='Image Classification', object_type='Generic Object', class_aliases=[], shift_type=None ) class STL10(ABDataset): def create_dataset(self, root_dir: str, split: str, transform: Optional[Compose], classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]): if transform is None: transform = cifar_like_image_train_aug() if split == 'train' else cifar_like_image_test_aug() self.transform = transform with HiddenPrints(): dataset = RawSTL10(root_dir, 'train' if split != 'test' else 'test', transform=transform, download=True) if len(ignore_classes) > 0: for ignore_class in ignore_classes: dataset.data = dataset.data[dataset.labels != classes.index(ignore_class)] dataset.labels = dataset.labels[dataset.labels != classes.index(ignore_class)] if idx_map is not None: # note: the code below seems correct but has bug! # for old_idx, new_idx in idx_map.items(): # dataset.targets[dataset.targets == old_idx] = new_idx for ti, t in enumerate(dataset.labels): dataset.labels[ti] = idx_map[t] if split != 'test': dataset = train_val_split(dataset, split) return dataset