# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # NVIDIA CORPORATION, its affiliates and licensors retain all intellectual # property and proprietary rights in and to this material, related # documentation and any modifications thereto. Any use, reproduction, # disclosure or distribution of this material and related documentation # without an express license agreement from NVIDIA CORPORATION or # its affiliates is strictly prohibited. import torch import nvdiffrast.torch as dr from . import util from . import mesh ###################################################################################### # Computes the image gradient, useful for kd/ks smoothness losses ###################################################################################### def image_grad(buf, std=0.01): t, s = torch.meshgrid(torch.linspace(-1.0 + 1.0 / buf.shape[1], 1.0 - 1.0 / buf.shape[1], buf.shape[1], device="cuda"), torch.linspace(-1.0 + 1.0 / buf.shape[2], 1.0 - 1.0 / buf.shape[2], buf.shape[2], device="cuda"), indexing='ij') tc = torch.normal(mean=0, std=std, size=(buf.shape[0], buf.shape[1], buf.shape[2], 2), device="cuda") + torch.stack((s, t), dim=-1)[None, ...] tap = dr.texture(buf, tc, filter_mode='linear', boundary_mode='clamp') return torch.abs(tap[..., :-1] - buf[..., :-1]) * tap[..., -1:] * buf[..., -1:] ###################################################################################### # Computes the avergage edge length of a mesh. # Rough estimate of the tessellation of a mesh. Can be used e.g. to clamp gradients ###################################################################################### def avg_edge_length(v_pos, t_pos_idx): e_pos_idx = mesh.compute_edges(t_pos_idx) edge_len = util.length(v_pos[:, e_pos_idx[:, 0]] - v_pos[:, e_pos_idx[:, 1]]) return torch.mean(edge_len) ###################################################################################### # Laplacian regularization using umbrella operator (Fujiwara / Desbrun). # https://mgarland.org/class/geom04/material/smoothing.pdf ###################################################################################### def laplace_regularizer_const(v_pos, t_pos_idx): batch_size = v_pos.shape[0] term = torch.zeros_like(v_pos) norm = torch.zeros_like(v_pos[..., 0:1]) v0 = v_pos[:, t_pos_idx[0, :, 0], :] v1 = v_pos[:, t_pos_idx[0, :, 1], :] v2 = v_pos[:, t_pos_idx[0, :, 2], :] term.scatter_add_(1, t_pos_idx[..., 0:1].repeat(batch_size, 1, 3), (v1 - v0) + (v2 - v0)) term.scatter_add_(1, t_pos_idx[..., 1:2].repeat(batch_size, 1, 3), (v0 - v1) + (v2 - v1)) term.scatter_add_(1, t_pos_idx[..., 2:3].repeat(batch_size, 1, 3), (v0 - v2) + (v1 - v2)) two = torch.ones_like(v0) * 2.0 # norm.scatter_add_(1, t_pos_idx[..., 0:1].repeat(batch_size, 1, 3), two) # norm.scatter_add_(1, t_pos_idx[..., 1:2].repeat(batch_size, 1, 3), two) # norm.scatter_add_(1, t_pos_idx[..., 2:3].repeat(batch_size, 1, 3), two) norm.scatter_add_(1, t_pos_idx[..., 0:1].repeat(batch_size, 1, 1), two) norm.scatter_add_(1, t_pos_idx[..., 1:2].repeat(batch_size, 1, 1), two) norm.scatter_add_(1, t_pos_idx[..., 2:3].repeat(batch_size, 1, 1), two) term = term / torch.clamp(norm, min=1.0) return torch.mean(term ** 2) ###################################################################################### # Smooth vertex normals ###################################################################################### def normal_consistency(v_pos, t_pos_idx): # Compute face normals v0 = v_pos[:, t_pos_idx[0, :, 0]] v1 = v_pos[:, t_pos_idx[0, :, 1]] v2 = v_pos[:, t_pos_idx[0, :, 2]] face_normals = util.safe_normalize(torch.cross(v1 - v0, v2 - v0, dim=-1)) tris_per_edge = mesh.compute_edge_to_face_mapping(t_pos_idx) # Fetch normals for both faces sharing an edge n0 = face_normals[:, tris_per_edge[:, 0], :] n1 = face_normals[:, tris_per_edge[:, 1], :] # Compute error metric based on normal difference term = torch.clamp(util.dot(n0, n1), min=-1.0, max=1.0) term = (1.0 - term) * 0.5 return torch.mean(torch.abs(term)) def get_edge_length(v_pos, t_pos_idx): e_pos_idx = mesh.compute_edges(t_pos_idx) edge_len = util.length(v_pos[:, e_pos_idx[:, 0]] - v_pos[:, e_pos_idx[:, 1]]) return edge_len