# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # NVIDIA CORPORATION, its affiliates and licensors retain all intellectual # property and proprietary rights in and to this material, related # documentation and any modifications thereto. Any use, reproduction, # disclosure or distribution of this material and related documentation # without an express license agreement from NVIDIA CORPORATION or # its affiliates is strictly prohibited. import torch # import tinycudann as tcnn import numpy as np ####################################################################################################################################################### # Small MLP using PyTorch primitives, internal helper class ####################################################################################################################################################### class _MLP(torch.nn.Module): def __init__(self, cfg, loss_scale=1.0): super(_MLP, self).__init__() self.loss_scale = loss_scale net = (torch.nn.Linear(cfg['n_input_dims'], cfg['n_neurons'], bias=False), torch.nn.ReLU()) for i in range(cfg['n_hidden_layers']-1): net = net + (torch.nn.Linear(cfg['n_neurons'], cfg['n_neurons'], bias=False), torch.nn.ReLU()) net = net + (torch.nn.Linear(cfg['n_neurons'], cfg['n_output_dims'], bias=False),) self.net = torch.nn.Sequential(*net).cuda() self.net.apply(self._init_weights) if self.loss_scale != 1.0: self.net.register_full_backward_hook(lambda module, grad_i, grad_o: (grad_i[0] * self.loss_scale, )) def forward(self, x): return self.net(x.to(torch.float32)) @staticmethod def _init_weights(m): if type(m) == torch.nn.Linear: torch.nn.init.kaiming_uniform_(m.weight, nonlinearity='relu') if hasattr(m.bias, 'data'): m.bias.data.fill_(0.0) ####################################################################################################################################################### # Outward visible MLP class ####################################################################################################################################################### class MLPTexture3D(torch.nn.Module): def __init__(self, AABB, channels=3, internal_dims=32, hidden=2, feat_dim=0, min_max=None, bsdf='diffuse', perturb_normal=False, symmetrize=False): super(MLPTexture3D, self).__init__() self.channels = channels self.feat_dim = feat_dim self.internal_dims = internal_dims self.AABB = AABB self.bsdf = bsdf self.perturb_normal = perturb_normal self.symmetrize = symmetrize if min_max is not None: self.register_buffer('min_max', min_max) else: self.min_max = None # Setup positional encoding, see https://github.com/NVlabs/tiny-cuda-nn for details. desired_resolution = 4096 base_grid_resolution = 16 num_levels = 16 per_level_scale = np.exp(np.log(desired_resolution / base_grid_resolution) / (num_levels-1)) enc_cfg = { "otype": "HashGrid", "n_levels": num_levels, "n_features_per_level": 2, "log2_hashmap_size": 19, "base_resolution": base_grid_resolution, "per_level_scale" : per_level_scale } # gradient_scaling = 128.0 gradient_scaling = 1.0 self.encoder = tcnn.Encoding(3, enc_cfg) self.encoder.register_full_backward_hook(lambda module, grad_i, grad_o: (grad_i[0] / gradient_scaling, )) # Setup MLP mlp_cfg = { "n_input_dims" : internal_dims + feat_dim, "n_output_dims" : self.channels, "n_hidden_layers" : hidden, "n_neurons" : self.internal_dims } self.linear = torch.nn.Linear(self.encoder.n_output_dims, internal_dims) self.net = _MLP(mlp_cfg, gradient_scaling) self.relu = torch.nn.ReLU(inplace=True) print("Encoder output: %d dims" % (self.encoder.n_output_dims)) # Sample texture at a given location def sample(self, texc, feat=None): assert (feat is None and self.feat_dim == 0) or feat.shape[-1] == self.feat_dim if self.symmetrize: xs, ys, zs = texc.unbind(-1) texc = torch.stack([xs.abs(), ys, zs], -1) # mirror -x to +x _texc = (texc.view(-1, 3) - self.AABB[0][None, ...]) / (self.AABB[1][None, ...] - self.AABB[0][None, ...]) _texc = torch.clamp(_texc, min=0, max=1) _, image_h, image_w, _ = texc.shape p_enc = self.encoder(_texc.contiguous()) x_in = self.linear(p_enc.type(texc.dtype)) if feat is not None: feat_in = feat[:, None, None, :].repeat(1, image_h, image_w, 1).view(-1, self.feat_dim) x_in = torch.concat([x_in, feat_in], dim=-1) out = self.net(self.relu(x_in)) # Sigmoid limit and scale to the allowed range out = torch.sigmoid(out) if self.min_max is not None: out = out * (self.min_max[1][None, :] - self.min_max[0][None, :]) + self.min_max[0][None, :] return out.view(*texc.shape[:-1], self.channels) # Remap to [n, h, w, c] # def cleanup(self): # tcnn.free_temporary_memory()